Lyczkowski, R. W., Gidaspow, D., Solbrig, C. W., and Hughes, E. D., 1978, “Characteristics and Stability Analyses of Transient One-Dimensional Two-Phase Flow Equations and Their Finite Difference Approximations,” Nucl. Sci. Eng., 66(3), pp. 378–396.

10.13182/NSE78-4Stewart, H. B., and Wendroff, B., 1984, “Two-Phase Flows: Models and Methods,” J. Comput. Phys., 56(3), pp. 363–409, doi:

10.1016/0021-9991(84)90103-7.

Okawa, T., and Tomiyama, A., 1995, “Applicability of High-Order Upwind Difference Methods to the Two-Fluid Model,” Advances in Multiphase Flow, Elsevier, Amsterdam, pp. 227–240, ISBN-13: 978-0-444-81811-9.

Ramshaw, J. D., and Trapp, J. A., 1978, “Characteristics, Stability, and Short-Wavelength Phenomena in Two-Phase Flow Equation Systems,” Nucl. Sci. Eng., 66(1), pp. 93–102.

Rousseau, J. C., and Ferch, R. L., 1979, “A Note on Two-Phase Separated Flow Models,” Int. J. Multiphase Flow, 5(6), pp. 489–493, doi:

10.1016/0301-9322(79)90034-X.

Ransom, V. H., and Hicks, D. L., 1984, “Hyperbolic Two-Pressure Models for Two-Phase Flow,” J. Comput. Phys., 53(1), pp. 124–151, doi:

10.1016/0021-9991(84)90056-1.

Tatsumi, T., 1995, Continuum Mechanics, Iwanami Shoten, Tokyo, Japan, Chap. VI, ISBN-13: 978-4000079228.

Stuhmiller, J. H., 1977, “The Influence of Interfacial Pressure Forces on the Character of Two-Phase Flow Model Equations,” Int. J. Multiphase Flow, 3(6), pp. 551–560, doi:

10.1016/0301-9322(77)90029-5.

Rietema, K., and Van Den Akker, H. E. A., 1983, “On the Momentum Equations in Dispersed Two-Phase Systems,” Int. J. Multiphase Flow, 9(1), pp. 21–36,

10.1016/0301-9322(83)90004-6.

Prosperetti, A., and Jones, A. V., 1984, “Pressure Forces in Disperse Two-Phase Flow,” Int. J. Multiphase Flow, 10(4), pp. 425–440, doi:

10.1016/0301-9322(84)90054-5.

Jones, A. V., and Prosperetti, A., 1985, “On the Suitability of First-Order Differential Models for Two-Phase Flow Prediction,” Int. J. Multiphase Flow, 11(2), pp. 133–148, doi:

10.1016/0301-9322(85)90041-2.

Okawa, T., and Kataoka, I., 2000, “Mathematical Well-Posedness of a Two-Fluid Equations for Bubbly Two-Phase Flow,” Trans. JSME B, 66(646), pp. 1281–1287.

[CrossRef]Okawa, T., and Kataoka, I., 2000, “Characteristics and Stability of a Two-Fluid Model for Bubbly Two-Phase Flow,” Proceedings of the 8th International Conference on Nuclear Engineering, ICONE-8058, Baltimore, MD, April 2–6.

Akimoto, H., Abe, Y., Ohnuki, A., and Murao, Y., 1991, “MINI-TRAC Code: A Driver Program for Assessment of Constitutive Equations of Two-Fluid Model,” Japan Atomic Energy Research Institute, Ibaraki, Japan, .

Japan Nuclear Energy Safety Organization, 2008, “Analysis of RIA Using a Three-Dimensional Code of Neutron Kinetics and Thermal-Hydraulics,” Japan Nuclear Energy Safety Organization, Tokyo, Japan, .

Mahaffy, J., 1982, “A Stability-Enhancing Two-Step Method for Fluid Flow Calculations,” J. Comput. Phys., 46(3), pp. 329–341, doi:

10.1016/0021-9991(82)90019-5.

Ransom, V. H., et al. , 1985, RELAP5/MOD2 Code Manual, Idaho National Engineering Laboratory, Idaho, .

Liles, D. R., et al. , 1988, “TRAC-PF1/MOD1, Correlations and Models,” Los Alamos National Laboratory, New Mexico, .

Borkowski, J. A., Giles, M. M., Wade, N. L., Shumway, R. W., and Rouhani, S. Z., 1992, TRAC-BF1/MOD1: An Advanced Best-Estimate Computer Program for BWR Accident Analysis. Model Description, Idaho National Engineering Laboratory, Idaho, .

Collier, J. G., and Thome, J. R., 1994, Convective Boiling and Condensation, Oxford University Press, Oxford, UK, Chap. VII, ISBN-13: 978-0198562962.

Lahey, R. T., 1978, “A Mechanistic Subcooled Boiling Model,” Proceedings of the 6th International Heat Transfer Conference, Toronto, Canada, Aug. 7–11, pp. 293–297.

Bestion, D., 1990, “The Physical Closure Laws in the CATHARE Code,” Nucl. Eng. Des., 124(3), pp. 229–245, doi:

10.1016/0029-5493(90)90294-8.