Klein, S., and Nellis, G., 2012, Thermodynamics, Cambridge University Press, Cambridge, UK.

Dobashi, K., Kimura, A., Oka, Y., and Koshizuka, S., 1998, “Conceptual Design of a High Temperature Power Reactor Cooled, and Moderated by Supercritical Light Water,” Ann. Nucl. Energy, 25(8), pp. 487–505.

10.1016/S0306-4549(97)00079-0Oka, Y., and Koshizuka, S., 2001, “Supercritical-Pressure, Once-Through Cycle Light Water Cooled Reactor Concept,” J. Nucl. Sci. Technol., 38(12), pp. 1081–1089.

10.1080/18811248.2001.9715139Oka, Y., Koshizuka, S., and Yamasaki, T., 1992, “Direct Cycle Light Water Reactor Operating at Supercritical Pressure,” J. Nucl. Sci. Technol. 29(6), pp. 585–588.

10.1080/18811248.1992.9731568Chatharaju, M., 2011, Computational Study of Critical Flow Discharge in Supercritical Water Cooled Reactors, McMaster University, Hamilton, Ontario, Canada.

Bishop, A., Efferding, L., and Tong, L., 1962, “A Review of Heat Transfer, and Fluid Flow of Water in the Supercritical Region, and During “Once-Through” Operation,” , Westinghouse Electric Corporation, Atomic Power Division, Pittsburgh, PA, 106 p.

Dostal, V., 2004, A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors, Massachusetts Institute of Technology, Cambridge, MA.

Dostal, V., Hejzlar, P., and Driscoll, M. J., 2006, “The Supercritical Carbon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles,” Nucl. Technol., 154(3), pp. 283–301.

[CrossRef]Wright, S. A., Radel, R. F., Vernon, M. E., Rochau, G. E., and Pickard, P. S., 2010, Operation and Analysis of a Supercritical CO_{2} Brayton Cycle, Albuquerque, NM and Livermore, CA.

Wright, S. A., Vernon, M. E., and Pickard, P. S., 2006, Concept Design for a High Temperature Helium Brayton Cycle with Interstage Heating and Cooling, Albuquerque, NM and Livermore, CA.

Mignot, G. P., Anderson, M. H., and Corradini, M. L., 2009, “Measurement of Supercritical CO2 Critical Flow: Effects of L/D, and Surface Roughness,” Nucl. Eng. Des., 239(5), pp. 949–955.

10.1016/j.nucengdes.2008.10.031Chen, J. P., Liu, J. P., Chen, Z. J., and Niu, Y. M., 2004, “Trans-critical R744, and Two-Phase Flow Through Short Tube Orifices,” Int. J. Therm. Sci., 43(6), pp. 623–630.

10.1016/j.ijthermalsci.2003.10.011Liu, J. P., Niu, Y. M., Chen, J. P., Chen, Z. J., and Feng, X., 2004, “Experimentation, and Correlation of R744 Two-Phase Flow Through Short Tubes,” Exp. Therm. Fluid Sci., 28(6), pp. 565–573.

10.1016/j.expthermflusci.2003.08.004Chen, Y., Zhao, M., Yang, C., Bi, K., Du, K., and Zhang, S., 2010, “Critical Flow of Water Under Supercritical Pressures,” 2010 14th International Heat Transfer Conference, Vol. 2, ASME, Washinton, DC, pp. 319–326.

Muftuoglu, A., and Teyssedou, A., 2014, “Experimental Study of Abrupt Discharge of Water at Supercritical Conditions,” Exp. Therm. Fluid Sci., 55(May), pp. 12–20.

10.1016/j.expthermflusci.2014.02.009Rodarte, M. A., 2011, The Development of an Experimental Test Facility to Measure Leakage through Labyrinth Seals, University of Wisconsin-Madison, Madison, WI.

Edlebeck, J. P., 2013, Measurements and Modeling of the Flow of Supercritical Carbon Dioxide, Master thesis, University of Wisconsin-Madison, Madison, WI.

Wolf, M. P., 2014, Flow of Supercritical Carbon Dioxide Through Annuli and Labyrinth Seals, Master thesis, University of Wisconsin-Madison, Madison, WI.

Wallis, G. B., 1980, “Critical Two-Phase Flow,” Int. J. Multiphase Flow, 6(1), pp. 97–112.

[CrossRef]Hesson, J. C., and Peck, R. E., 1958, “Flow of Two-Phase Carbon Dioxide Through Orifices,” AIChE J., 4(2), pp. 207–210.

10.1002/(ISSN)1547-5905Simoneau, R. J., and Hendricks, R. C., 1977, “Generalized Charts for Computation of Two-Phase Choked Flow of Simple Cryogenic Liquids,” Cryogenics, 17(2), pp. 73–76.

10.1016/0011-2275(77)90099-6Zhang, C., and Yang, L., 2005, “Modeling of Supercritical CO2 Flow Through Short Tube Orifices,” J. Fluids Eng., 127(6), pp. 1194–1198.

10.1115/1.2060738Yang, L., and Zhang, C., 2009, “Modified Neural Network Correlation of Refrigerant Mass Flow Rates Through Adiabatic Capillary, and Short Tubes: Extension to CO2 Transcritical Flow,” Int. J. Refrig., 32(6), pp. 1293–1301.

10.1016/j.ijrefrig.2009.03.005Yadav, A. K., Ram Gopal, M., and Bhattacharyya, S., 2012, “Computational Fluid Dynamic Analysis of a Supercritical CO2 Based Natural Circulation Loop With End Heat Exchangers,” Int. J. Adv. Eng. Sci. Appl. Math., 4(3), pp. 119–126.

10.1007/s12572-012-0062-2Lemmon, E. W., Huber, M. L., and Mclinden, M. O., 2007, NIST Reference Fluid Thermodynamic and Transport Properties-REFPROP, Boulder, CO.

Van Abel, E., Anderson, M., and Corradini, M., 2011, “Numerical Investigation of Pressure Drop and Local Heat Transfer of Supercritical CO2 in Printed Circuit Heat Exchangers,” Supercritical CO2 Power Cycle Symposium, Boulder, CO.

Suo-anttila, A. J., and Wright, S. A., 2011, “Computational Fluid Dynamics Code for Supercritical Fluids,” Supercritical CO2 Power Cycle Symposium, Boulder, CO.

Qiu, L., and Reitz, R. D., 2014, “Condensation Processes in a Motoring Engine,” J. Supercrit. Fluids, 90(June), pp. 84–100.

10.1016/j.supflu.2014.03.013Qiu, L., Wang, Y., and Reitz, R. D., 2014, “On Regular, and Retrograde Condensation in Multiphase Compressible Flows,” Int. J. Multiphase Flow, 64(1), pp. 85–96.

10.1016/j.ijmultiphaseflow.2014.05.004Fairweather, M., Falle, S., Hebrard, J., Jamois, D., Proust, C., Wareing, C., and Woolley, R., 2012, “Reynolds-Averaged Navier-Stokes Modelling of the Near-Field Structure of Accidental Releases of Carbon Dioxide from Pipelines,” Proceedings of the 22nd European Symposium on Computer Aided Process Engineering, London, UK.

Van Doormaal, J. P., and Raithby, G. D., 1984, “Enhancements of the Simple Method for Predicting Incompressible Fluid Flows,” Numer. Heat Transfer., 7(2), pp. 147–163.

10.1080/01495728408961817He, S., Kim, W. S., and Bae, J. H., 2008, “Assessment of Performance of Turbulence Models in Predicting Supercritical Pressure Heat Transfer in a Vertical Tube,” Int. J. Heat Mass Transf., 51(19–20), pp. 4659–4675.

10.1016/j.ijheatmasstransfer.2007.12.028Jones, W., and Launder, B. E., 1972, “The Prediction of Laminarization with a Two-Equation Model of Turbulence,” Int. J. Heat Mass Transf., 15(2), pp. 301–304.

10.1016/0017-9310(72)90076-2Menter, F. R., 1993, “Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows,” 24th Fluid Dynamics Conference, Orlando, Florida.

Yoo, J. Y., 2013, “The Turbulent Flows of Supercritical Fluids with Heat Transfer,” Annu. Rev. Fluid Mech., 45(1), pp. 495–525.

Bae, Y., Hong, S., and Kim, Y., 2012, “Numerical Simulation of Supercritical Heat Transfer Under Severe Axial Density Gradient in a Narrow Vertical Tube,” The 12th International Congress on Advances in Nuclear Power Plants, Chicago,IL.

Jaromin, M., and Anglart, H., 2013, “A Numerical Study of the Turbulent Prandtl Number Impact on Heat Transfer to Supsercritical Water Flowing Upward Under Deteriorated Conditions,” The 15th International Topical Meeting on Nuclear Reactor Thermalhydraulics, Pisa, Italy.

Weisman, J., Duncan, D., Gibson, J., and Crawford, T., 1979, “Diameter on Two-Phase Flow Patterns in Horizontal Lines,” Int. J. Multiphase Flow, 5(1), pp. 437–462.

[CrossRef]Weisman, J., and Kang, S., 1981, “Flow Pattern Transitions in Vertical, and Upwardly Inclined Lines,” Int. J. Multiphase Flow, 7(1), pp. 271–291.

10.1016/0301-9322(81)90022-7Moody, F. J., 1965, “Maximum Flow Rate of a Single Component, Two-Phase Mixture,” J. Heat Transfer, 87(1), pp. 134–141.

10.1115/1.3689029Fauske, H. K., 1961, Contribution to the Theory of Two-Phase, One-Component Critical Flow, Chicago, IL.