0
Research Papers

Experimental Observations on Wake Characteristics of a Rising Bubble in a Vertical Narrow Rectangular Channel

[+] Author and Article Information
Mingliang Song

CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology,
Nuclear Power Institute of China,
Chengdu 610041, PR China;
National Energy R&D Center of Pressurized Water Reactor Technology,
Nuclear Power Institute of China,
Chengdu 610041, PR China
e-mail: songmingliang1986@163.com

Yanping Huang

CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology,
Nuclear Power Institute of China,
Chengdu 610041, PR China;
National Energy R&D Center of Pressurized Water Reactor Technology,
Nuclear Power Institute of China,
Chengdu 610041, PR China
e-mail: Hyanping007@163.com

Liqin Zhang

CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology,
Nuclear Power Institute of China,
Chengdu 610041, PR China;
National Energy R&D Center of Pressurized Water Reactor Technology,
Nuclear Power Institute of China,
Chengdu 610041, PR China
e-mail: liqinzhang001@163.com

Junfeng Wang

CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology,
Nuclear Power Institute of China,
Chengdu 610041, PR China;
National Energy R&D Center of Pressurized Water Reactor Technology,
Nuclear Power Institute of China,
Chengdu 610041, PR China
e-mail: walojef@163.com

Yuanfeng Zan

CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology,
Nuclear Power Institute of China,
Chengdu 610041, PR China;
National Energy R&D Center of Pressurized Water Reactor Technology,
Nuclear Power Institute of China,
Chengdu 610041, PR China
e-mail: yfzan@163.com

1Corresponding author.

Manuscript received June 15, 2014; final manuscript received November 14, 2014; published online March 24, 2015. Assoc. Editor: Milorad Dzodzo.

ASME J of Nuclear Rad Sci 1(2), 021004 (Mar 24, 2015) (12 pages) Paper No: NERS-14-1014; doi: 10.1115/1.4029339 History: Received June 15, 2014; Accepted December 17, 2014; Online March 24, 2015

Wake characteristics of a rising air and vapor bubble through stagnant and flowing deionized water in a vertical narrow rectangular channel were investigated using particle image velocimetry (PIV). Influence of inlet average fluid velocity on bubble behavior was discussed. The results showed that relative terminal velocities of air bubble under different inlet average fluid velocities were almost equal to the terminal velocity in stagnant fluid, and terminal rising velocities of single air bubble and vapor bubble are very close under adiabatic boundary condition. As flow velocity increased, wake structure simplified. Disturbances in the wake of the vapor bubble were more noticeable.

Copyright © 2015 by ASME
Topics: Wakes , Bubbles , Vapors , Fluids
Your Session has timed out. Please sign back in to continue.

References

Figures

Grahic Jump Location
Fig. 1

(a) Flow diagram of experimental loop. (b) Sectional view of the test section (2 mm gap). (c) Schematic graph of air injection.

Grahic Jump Location
Fig. 2

(a) Absolute terminal rise velocities of the single air bubbles in water. (b) Relative terminal rise velocities of the single air bubbles in water.

Grahic Jump Location
Fig. 3

(a) Absolute terminal rise velocities of the single rising air bubbles in water. (b) Relative terminal rise velocities of the single rising air bubbles in water.

Grahic Jump Location
Fig. 4

Vector plots of the transient velocity field in the wake of rising oval air bubbles. (a) Stagnant fluid (dae=8.2  mm, 0  m/s, 0.37  m/s, 0.50  m/s). (b) 0.05  m/s inlet average fluid velocity (dae=8.6  mm, 0.09  m/s, 0.19  m/s, 0.28  m/s). (c) 0.2  m/s inlet average fluid velocity (dae=8.3  mm, 0.2  m/s).

Grahic Jump Location
Fig. 5

Vector plots of the transient velocity field in the wake of the rising swing cap air bubble. (a) Stagnant fluid (dae=17.5  mm, 0  m/s, 0.12  m/s, 0.24  m/s). (b) 0.05  m/s inlet average fluid velocity (dae=15.1  mm, 0  m/s, 0.12  m/s, 0.24  m/s, 0.31  m/s, 0.37  m/s). (c) 0.2  m/s inlet average fluid velocity (dae=17.6  mm, 0.19  m/s, 0.29  m/s, 0.48  m/s, 0.57  m/s).

Grahic Jump Location
Fig. 6

Vector plots of the transient velocity field in the wake of the rising swing cap air bubble. (a) Stagnant fluid (dae=28.7  mm, 0  m/s, 0.17  m/s, 0.33  m/s, 0.42  m/s, 0.5  m/s). (b) 0.05  m/s inlet average fluid velocity (dae=30.1  mm, 0  m/s, 0.21  m/s, 0.33  m/s, 0.42  m/s, 0.63  m/s). (c) 0.2  m/s inlet average fluid velocity (dae=28.3  mm, 0.49  m/s, 0.99  m/s, 1.24  m/s, 1.48  m/s).

Grahic Jump Location
Fig. 7

Longitudinal velocity on the centerline behind the rising cap air bubble (dae=28.7  mm for Ul,av=0.0  m/s, dae=29.3  mm for Ul,av=0.1  m/s, dae=28.3  mm for Ul,av=0.2  m/s). (a) Longitudinal distributions of absolute velocity behind the bubble. (b) Longitudinal distributions of dimensionless velocity behind the bubble.

Grahic Jump Location
Fig. 8

Maximum lateral distributions of longitudinal velocity in the wake of the rising cap air bubble (dae=28.7  mm for Ul,av=0.0  m/s, dae=30.1  mm for Ul,av=0.05  m/s, dae=29.3  mm for Ul,av=0.1  m/s, dae=28.3  mm for Ul,av=0.2  m/s). (a) Lateral distributions of absolute velocity in the wake. (b) Lateral distributions of dimensionless velocity in the wake.

Grahic Jump Location
Fig. 9

Lateral distributions of longitudinal velocity in front of the rising cap air bubble (dae=28.7  mm for Ul,av=0.0  m/s, dae=30.1  mm for Ul,av=0.05  m/s, dae=29.3  mm for Ul,av=0.1  m/s). (a) Lateral distributions of absolute velocity in front of the bubble. (b) Lateral distributions of dimensionless velocity in front of the bubble.

Grahic Jump Location
Fig. 10

Vector plots of the transient velocity field in the wake of the rising oval vapor bubble. (a) 0.2  m/s inlet average fluid velocity (dae=8.1  mm, 0  m/s, 0.18  m/s, 0.37  m/s, 0.46  m/s, 0.55  m/s). (b) 0.25  m/s inlet average fluid velocity (dae=8.5  mm, 0  m/s, 0.19  m/s, 0.38  m/s, 0.47  m/s, 0.56  m/s).

Grahic Jump Location
Fig. 11

Vector plots of the transient velocity field in the wake of the rising swing cap vapor bubble. (a) 0.2  m/s inlet average fluid velocity (dae=18.2  mm, 0  m/s, 0.50  m/s, 1.00  m/s, 1.26  m/s, 1.51  m/s). (b) 0.25  m/s inlet average fluid velocity (dae=17.9  mm, 0  m/s, 0.34  m/s, 0.46  m/s, 0.57  m/s, 0.68  m/s).

Grahic Jump Location
Fig. 12

Vector plots of the transient velocity field in the wake of the rising cap vapor bubble. (a) 0.2  m/s inlet average fluid velocity (dae=28.8  mm, 0  m/s, 0.23  m/s, 0.47  m/s, 0.57  m/s, 0.70  m/s). (b) 0.25  m/s inlet average fluid velocity (dae=29.3  mm, 0  m/s, 0.34  m/s, 0.67  m/s, 0.86  m/s, 1.03  m/s).

Grahic Jump Location
Fig. 13

Longitudinal velocity on the centerline below the rising cap vapor bubble (dae=28.8  mm for Ul,av=0.2  m/s, dae dae=29.3  mm for Ul,av=0.25  m/s). (a) Longitudinal distributions of absolute velocity behind the bubble. (b) Longitudinal distributions of dimensionless velocity behind the bubble.

Grahic Jump Location
Fig. 14

Maximum lateral distributions of longitudinal velocity in the wake of the rising cap vapor bubble (dae=28.8  mm for Ul,av=0.2  m/s, dae=29.3  mm for Ul,av=0.25  m/s). (a) Lateral distributions of absolute velocity in the wake. (b) Lateral distributions of dimensionless velocity in the wake.

Grahic Jump Location
Fig. 15

Distributions of longitudinal velocity in front of the rising cap vapor bubble (dae=28.8  mm for Ul,av=0.2  m/s, dae=29.3  mm for Ul,av=0.25  m/s). (a) Lateral distributions of absolute velocity in front of the bubble. (b) Lateral distributions of dimensionless velocity in front of the bubble.

Grahic Jump Location
Fig. 16

Comparison of wake images of air and vapor bubbles under the same condition. (a) 0.2  m/s inlet average fluid velocity of the rising oval air bubble (dae=8.3  mm, 0.2  m/s). (b) 0.2  m/s inlet average fluid velocity of the rising swing cap air bubble (dae=17.6  mm, 0.19  m/s, 0.29  m/s, 0.48  m/s, 0.57  m/s). (c) 0.2  m/s inlet average fluid velocity of the rising cap air bubble (dae=28.3  mm, 0.49  m/s, 0.99  m/s, 1.24  m/s, 1.48  m/s). (d) 0.2  m/s inlet average fluid velocity of the rising oval vapor bubble (dae=8.1  mm, 0  m/s, 0.18  m/s, 0.37  m/s, 0.46  m/s, 0.55  m/s). (e) 0.2  m/s inlet average fluid velocity of the rising swing cap vapor bubble (dae=18.2  mm, 0  m/s, 0.50  m/s, 1.00  m/s, 1.26  m/s, 1.51  m/s). (f) 0.2  m/s inlet average fluid velocity of the rising cap vapor bubble (dae=28.8  mm, 0  m/s, 0.23  m/s, 0.47  m/s, 0.57  m/s, 0.70  m/s).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In