0
Research Papers

Cross-Section Influence on Monte Carlo-Based Burn-Up Codes Applied to a GFR-Like Configuration

[+] Author and Article Information
Davide Chersola

GeNERG—DIME/TEC University of Genova,
Via all’Opera Pia, 15/A, 16145 Genova, Italy;
INFN,
Via Dodecaneso, 33, 16146 Genova, Italy
e-mail: davide.chersola@edu.unige.it

Guglielmo Lomonaco

Mem. ASME
GeNERG—DIME/TEC University of Genova,
Via all’Opera Pia, 15/A, 16145 Genova, Italy;
INFN,
Via Dodecaneso, 33, 16146 Genova, Italy
e-mail: guglielmo.lomonaco@unige.it

Guido Mazzini

Centrum výzkumu Řež,
25068 Husinec-Rez, Czech Republic
e-mail: guido.mazzini@cvrez.cz

1Corresponding author.

Manuscript received July 24, 2014; final manuscript received January 4, 2015; published online May 20, 2015. Assoc. Editor: Jay F. Kunze.

ASME J of Nuclear Rad Sci 1(3), 031004 (May 20, 2015) (15 pages) Paper No: NERS-14-1027; doi: 10.1115/1.4029521 History: Received July 24, 2014; Accepted January 07, 2015; Online May 20, 2015

This paper reports the results of a comparison among JEFF and ENDF/B data sets when used by SERPENT and MONTEBURNS codes on a gas-cooled fast reactor (GFR)-like configuration. Particularly, it shows a comparison between the two Monte Carlo-based codes, each one adopting three different cross-section data sets, namely, JEFF-3.1, JEFF-3.1.2, and ENDF/B-VII.1. Calculations have been carried out on the Allegro reactor, i.e., an experimental GFR-like facility that could be built in the European Union as a GFR demonstration. Results include nuclear parameters, such as the effective multiplication factor and fluxes, as well as the atomic densities for some important nuclides versus burn-up.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bosq, J. C., Conti, A., Rimpault, G., and Garnier, J. C., 2004, “Methodology for a Large Gas-Cooled Fast Reactor Core Design and Associated Neutronic Uncertainties,” Proceedings of PHYSOR 2004, Apr. 25–29, American Nuclear Society (ANS), Chicago.
Chersola, D., Lomonaco, G., Marotta, R., and Mazzini, G., 2014, “Comparison Between SERPENT and MONTEBURNS Codes Applied to Burnup Calculations of a GFR-like Configuration,” Nucl. Eng. Des., 273(C), pp. 542–554. 10.1016/j.nucengdes.2014.03.035
Bomboni, E., Cerullo, N., Fridman, E., Lomonaco, G., and Shwageraus, E., 2010, “Comparison Among MCNP-based Depletion Codes Applied to Burnup Calculations of Pebble-Bed HTR Lattices,” Nucl. Eng. Des., 204(4), pp. 918–924, . 10.1016/j.nucengdes.2009.12.006
Bomboni, E., Cerullo, N., Lomonaco, G., and Romanello, V., 2008, “A Critical Review of the Recent Improvements in Minimizing Nuclear Waste by Innovative Gas-Cooled Reactors,” Sci. Technol. Nuclear Install., 2008, 18 pp. 10.1155/2008/265430
Bomboni, E., Cerullo, N., and Lomonaco, G., 2008, “New Developments in Actinides Burning with Symbiotic LWR-HTR-GCFR Fuel Cycles: Perspectives and Challenges,” Proceedings of IEMPT-10, Mito, Japan, Oct. 6–10, ISBN: 978-92-64-99097-5.
Bomboni, E., Cerullo, N., and Lomonaco, G., 2009, “Assessment of LWR-HTR-GCFR Integrated Cycle,” Sci. Technol. Nucl. Install., 2009, 14 pp. 10.1155/2009/193594
Cerullo, N., Chersola, D., Lomonaco, G., and Marotta, R., 2012, “The Use of GFR Dedicated Assemblies in the Frame of Advanced Symbiotic Fuel Cycles: An Innovative Way to Minimize the Long-Term Spent Fuel Radiotoxicity,” Proceedings of the 12th Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation—IEMPT12, Prague, Czech Republic, Sept. 24–27, http://www.oecd-nea.org/pt/iempt12/.
Chersola, D., 2010, “Le scorie nucleari come risorsa: il potenziale contributo dei cicli simbiotici per la produzione di energia e la riduzione della radiotossicità a lungo termine del combustibile esaurito,” M.Sc. thesis in Mechanical Engineering, University of Genova, Genova, Italy.
Chersola, D., Lomonaco, G., and Marotta, R., 2014, “The VHTR and GFR and their Use in Innovative Symbiotic Fuel Cycles,” Progr. Nucl. Energy, 17 pp. 10.1016/j.pnucene.2014.12.005
Vezzoni, B., Cerullo, N., Forasassi, G., Fridman, E., Lomonaco, G., Romanello, V., and Shwageraus, E., 2009, “Preliminary Evaluation of a Nuclear Scenario Involving Innovative Gas Cooled Reactors,” Sci. Technol. Nucl. Install., 2009, 16 pp. 10.1155/2009/940286
Cerullo, N., Chersola, D., Lomonaco, G., and Marotta, R., 2014, “The GFR in the Frame of Advanced Fuel Cycles: The Use of DA as an Improved Way to Minimize the MA Content in the SNF,” J. Energy Power Sources, 1(5), pp. 278–286.
Chersola, D., Lomonaco, G., and Mazzini, G., 2014, “Cross Sections Influence on Monte Carlo Based Burnup Codes,” Proceedings of the 22nd International Conference on Nuclear Engineering (ICONE22), PragueCzech Republic, Jul. 7–11, ASME. doi: 10.1115/ICONE22-31049.
CEA, 2008, ALLEGRO 75 MWth CERAMIC Pin Core Design at Start of GoFastR, France.
CEA, 2008, ALLEGRO 75 MWth MOX Pin Core Design at Start of GoFastR, France.
CEA, 2008, Experimental GFR S/A in ALLEGRO 75 MWth MOX Pin Core Design at Start of GoFastR, France.
Poette, C., Morin, F., Brun-Magaud, V., and Pignatel, J. F., 2010, ALLEGRO 75 MW Cores Definition at Start of GoFastR, GoFastR Project Deliverable D1.2-1.
Pelloni, S., and Mikityuk, K., 2012, Evaluation of Uncertainties for GFR and ALLEGRO Cores, GoFastR, GoFastR Project Deliverable D 1.5.2.
Poette, C., Brun-Magaud, V., Pelloni, S., Fountain, M., Szieberth, M., Kiss, B., Murgatroyd, J., Hogenbirk, A., Farkas, I., Lomonaco, G., and Manni, F., 2013, Final Report on ALLEGRO Starting and Demonstration Cores, GoFastR, GoFastR Project Deliverable D1.2-9.
Líška, P., and Cognet, G., 2011, “The ALLEGRO Project—European Project of Fast Breeder Reactor,” Proceedings of the 1st International Nuclear Energy Congress, Warsaw, May 23–24.
Pelloni, S., 2011, ALLEGRO: Mixed Oxide (MOX) Core Specifications and Neutronics Characterization for Beginning of Life (BOL) Conditions, TM-41-11-12, Paul Scherrer Institut, Switzerland.
Richard, P., Conti, A., Bosq, J. C., Morin, F., and Tosello, A., 2006, “GCFR 2400 MWth Core—Trends for a New Core Design,” GCFR Meeting, Knutsford, UK.
Bomboni, E., 2010, “Nuclear Waste Reduction by an Integrated LWR-HTR-GCFR Fuel Cycle,” Ph.D. thesis, University of Pisa, Italy, http://etd.adm.unipi.it/theses/available/etd-04012010-205304/.
van Rooijen, W. F. G., Kloosterman, J. L., Van Gendt, G. J., van der Stok, D. I., Cerullo, N., Lomonaco, G., and Bomboni, E., 2008, Actinide Transmutation in GFR, GCFR-STREP Project Deliverable 31.
Leppänen, J., 2013, “Serpent—A Continuous-Energy Monte Carlo Reactor Physics Burnup Calculation Code,” User’s Manual, http://montecarlo.vtt.fi/.
X-5 Monte Carlo Team, 2003, MCNP—A General Monte Carlo N-Particle Transport Code, Version 5, LA-UR-03-1987, http://mcnp.lanl.gov/.
Pusa, M., and Leppänen, J., 2010, “Computing the Matrix Exponential in Burnup Calculations,” Nucl. Sci. Eng., 164(2), pp. 140–150. 10.13182/NSE
Leppänen, J. and Isotalo, A., 2012, “Burnup Calculation Methodology in Serpent 2 Monte Carlo code,” Proceedings of PHYSOR 2012, Knoxville, TN, Apr 15–20.
Poston, D. I., and Trellue, H. R., 1999, User’s Manual Version 2.0 for Monteburns 1.0, LAUR-99-4999.
Croff, A. G., 1980, A User’s Manual for the ORIGEN2 Computer Code, ORNL/TM-7175.
Trkov, A., Herman, M., and Brown, D. A., 2012, ENDF-6 Formats Manual, Data Formats and Procedures for the Evaluated Nuclear Data Files ENDF/B-VI and ENDF/B-VII, National Nuclear Data Center, Brookhaven National Laboratory, Upton.
MacFarlane, R. E., 2000, “An Introduction to the ENDF Formats,” Workshop on Nuclear Data and Nuclear Reactors, Trieste, Italy, Mar. 13–Apr. 14.
Koning, A., Forrest, R., Kellett, M., Mills, R., Henriksson, H., and Rugama, Y., 2006, The JEFF-3.1 Nuclear Data Library, , ISBN: 92-64-02314-3, France.
Koning, A., Dean, C., Fischer, U., and Mills, R., 2013, “Validation of the JEFF-3.1 Nuclear Data Library,” , France.
Santamarina, A., Bernard, D., Blaise, P., Coste, M., Courcelle, A., Huynh, T. D., Jouanne, C., Leconte, P., Litaize, O., Mengelle, S., Noguère, G., Ruggiéri, J.-M., Sérot, O., Tommasi, J., Vaglio, C., and Vidal, J.-F., 2009, “The JEFF-3.1.1 Nuclear Data Library, Validation Results from JEF-2.2 to JEFF-3.1.1,” , ISBN: 978-92-64-99074-6, France.
Cabellos, O., 2012, Processing of the JEFF-3.1.2 Cross Section Library with the NJOY Code System into Various Formats (ACE, PENDF, GENDF, MATXSR and BOXER) for Testing Purposes & Processing the Most Recent Cross-section Libraries into JANIS Format, , France.
Cabellos, O., 2012, “Processing of the JEFF-3.1.2 Cross Section Library into Various Formats (ACE, PENDF, GENDF, MATXSR and BOXER) for Testing Purposes,” JEFF Meeting at Escuela Técnica Superior de Ingenieros Industriales, Madrid, Spain, Apr. 25–27.
Chadwick, M. B., et al. , 2011, “ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data,” Nucl. Data Sheets, 112(12), pp. 2887–2996. 10.1016/j.nds.2011.11.002
STI/PUB/1264, 2007, WIMS-D Library Update—IAEA Technical Report, http://www-pub.iaea.org/MTCD/Publications/PDF/Pub1264_web.pdf.

Figures

Grahic Jump Location
Fig. 1

Allegro radial (left) and axial (right) geometrical cross sections (created by SERPENT geometry plotter)

Grahic Jump Location
Fig. 2

Fuel S/As: MOX24 pin S/A (left) and experimental S/A (right)

Grahic Jump Location
Fig. 3

SERPENT, trends of keff versus burn-up

Grahic Jump Location
Fig. 4

MONTEBURNS, trends of keff versus burn-up

Grahic Jump Location
Fig. 5

SERPENT, 69-group spectra for the whole core

Grahic Jump Location
Fig. 6

MONTEBURNS, 69-group spectra for the whole core

Grahic Jump Location
Fig. 7

SERPENT, 69-group spectra in fuel pin S/As

Grahic Jump Location
Fig. 8

MONTEBURNS, 69-group spectra in fuel pin S/As

Grahic Jump Location
Fig. 9

SERPENT, 69-group spectra in fuel slab S/As

Grahic Jump Location
Fig. 10

MONTEBURNS, 69-group spectra in fuel slab S/As

Grahic Jump Location
Fig. 11

SERPENT, flux along radial direction

Grahic Jump Location
Fig. 12

MONTEBURNS, flux along radial direction

Grahic Jump Location
Fig. 13

SERPENT, flux along axial direction

Grahic Jump Location
Fig. 14

MONTEBURNS, flux along axial direction

Grahic Jump Location
Fig. 15

SERPENT, U235 atomic density versus burn-up

Grahic Jump Location
Fig. 16

MONTEBURNS, U235 atomic density versus burn-up

Grahic Jump Location
Fig. 17

SERPENT, Pu238 atomic density versus burn-up

Grahic Jump Location
Fig. 18

MONTEBURNS, Pu238 atomic density versus burn-up

Grahic Jump Location
Fig. 19

SERPENT, Pu239 atomic density versus burn-up

Grahic Jump Location
Fig. 20

MONTEBURNS, Pu239 atomic density versus burn-up

Grahic Jump Location
Fig. 21

SERPENT, Pu242 atomic density versus burn-up

Grahic Jump Location
Fig. 22

MONTEBURNS, Pu242 atomic density versus burn-up

Grahic Jump Location
Fig. 23

SERPENT, Am241 atomic density versus burn-up

Grahic Jump Location
Fig. 24

MONTEBURNS, Am241 atomic density versus burn-up

Grahic Jump Location
Fig. 25

SERPENT, Am243 atomic density versus burn-up

Grahic Jump Location
Fig. 26

MONTEBURNS, Am243 atomic density versus burn-up

Grahic Jump Location
Fig. 27

SERPENT, Cm244 atomic density versus burn-up

Grahic Jump Location
Fig. 28

MONTEBURNS, Cm244 atomic density versus burn-up

Grahic Jump Location
Fig. 29

SERPENT, Tc99 atomic density versus burn-up

Grahic Jump Location
Fig. 30

MONTEBURNS, Tc99 atomic density versus burn-up

Grahic Jump Location
Fig. 31

SERPENT, U235 fission reaction rate versus burn-up

Grahic Jump Location
Fig. 32

MONTEBURNS, U235 fission reaction rate versus burn-up

Grahic Jump Location
Fig. 33

SERPENT, Cm244 fission reaction rate versus burn-up

Grahic Jump Location
Fig. 34

MONTEBURNS, Cm244 fission reaction rate versus burn-up

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In