0
Research Papers

Thermodynamics of Nuclear Waste Reprocessing: Separation of Lanthanides Using Liquid Metals and Alloys

[+] Author and Article Information
Stanislav Yu. Melchakov

Department of Rare Metals and Nanomaterials,
Institute of Physics and Technology,
Ural Federal University,
19 Mira Street, Yekaterinburg 620002, Russia
e-mail: s.yu.melchakov@gmail.com

Leonid F. Yamshchikov

Department of Rare Metals and Nanomaterials,
Institute of Physics and Technology,
Ural Federal University,
19 Mira Street, Yekaterinburg 620002, Russia
e-mail: l.yamshchikov@gmail.com

Vladimir A. Volkovich

Department of Rare Metals and Nanomaterials,
Institute of Physics and Technology,
Ural Federal University,
19 Mira Street, Yekaterinburg 620002, Russia
e-mail: v.a.volkovich@urfu.ru

Alexander G. Osipenko

Radiochemistry Division,
Joint Stock Company “State Scientific Centre—Research Institute of Atomic Reactors,”Dimitrovgrad, Ulyanovsk Region 433510, Russia
e-mail: osipenko@niiar.ru

1Corresponding author.

Manuscript received July 24, 2014; final manuscript received February 6, 2015; published online May 20, 2015. Assoc. Editor: Jay F. Kunze.

ASME J of Nuclear Rad Sci 1(3), 031003 (May 20, 2015) (5 pages) Paper No: NERS-14-1026; doi: 10.1115/1.4029790 History: Received July 24, 2014; Accepted February 10, 2015; Online May 20, 2015

Thermodynamics of separation of praseodymium and neodymium employing liquid low-melting metals and alloys is considered. Pr/Nd separation factors on liquid Ga, In, Bi, and Ga-In eutectic were calculated from the thermodynamic data. The obtained results are compared with the literature data on experimentally determined separation factors on “traditional” liquid metals: Bi, Zn, and Cd. It is shown that one-stage selective extraction of praseodymium or neodymium from the mixture using any of the mentioned metals is not possible. In the separation process of lanthanides from minor actinides using a chloride molten salt–liquid metal system, cerium group lanthanide fission products will be accumulated in the salt phase.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Yatsenko, S. P., and Hayak, V. G., 1997, Composite Solders Based on Low Melting Alloys, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russia, ISBN: 5-7691-0613-1.
Kinoshita, K., Koyama, T., Inoue, T., Ougier, M., and Glatz, J.-P., 2005, “Separation of Actinides From Rare Earth Elements by Means of Molten Salt Electrorefining With Anodic Dissolution of U–Pu–Zr Alloy Fuel,” J. Phys. Chem. Solids, 66(2–4), pp. 619–624. 10.1016/j.jpcs.2004.06.069
Zemlyanuchin, V. I., Ylenko, E. Y., and Kondratyev, A. N., 1989, Radiochemical Recycling of Power Plants’ Spent Nuclear Fuel, Energoatomizdat, Moscow, USSR, ISBN: 5-283-02981-6.
Bard, A. J., and Faulkner, L. R., 2001, Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, New York, ISBN: 0-471-04372-9.
Melchakov, S. Yu., Ivanov, V. A., Yamshchikov, L. F., Volkovich, V. A., Osipenko, A. G., and Kormilitsyn, M. V., 2013, “Thermodynamics of Reaction of Praseodymium With Gallium–Indium Eutectic Alloy,” J. Nucl. Mater., 437(1–3), pp. 66–69. 10.1016/j.jnucmat.2013.02.001
Lebedev, V. A., 1993, Selectivity of Liquid Metal Electrodes in Molten Halides, Metallurgiya, Chelyabinsk, Russia, pp. 173–208, ISBN: 5-229-00962-4.
Bayanov, A. P., Gurskaya, S. F., and Serebrennikov, V. V., 1965, “About the Behavior of Some Rare Earth Elements and Yttrium in Liquid Cathodes Under Electrolysis,” Protective Metal and Oxide Coatings, Metal Corrosion and Electrochemistry Investigations, Abstract Book, Nauka, Moscow, Leningrad, pp. 231–235.
Ackerman, J. P., and Settle, J. L., 1991, “Partition of Lanthanum and Neodymium Metals and Chloride Salts Between Molten Cadmium and Molten LiCl-KCl Eutectic,” J. Alloys Comp., 177(5), pp. 129–141. 10.1016/0925-8388(91)90063-2
Moriyama, H., Seshimo, T., Moritani, K., Ito, Y., and Mitsugashira, T., 1994, “Reductive Extraction Behaviour of Actinide and Lanthanide Elements in Molten Salt and Liquid Metal Binary Phase Systems,” J. Alloys Comp., 213–214, pp. 354–359, SSDI: 0925-8388(94)04099-P. 10.1016/0925-8388(94)90930-X
Toda, T., Maruyama, T., Moritani, K., Moriyama, H., and Hayashi, H., 2009, “Separation Factor of Americium Grom Cerium in Molten Chloride–Liquid Gallium Reductive Extraction System,” Electrochemistry, 77(8), pp. 649–651. 10.5796/electrochemistry.77.649
Lambertin, D., Ched’homme, S., Bourges, G., Sanchez, S., and Picard, G. S., 2005, “Activity Coefficients of Plutonium and Cerium in Liquid Gallium at 1073 K: Application to a Molten Salt/Solvent Metal Separation Concept,” J. Nucl. Mater., 341(2–3), pp. 131–140. 10.1016/j.jnucmat.2005.01.009
Kinoshita, K., Inoue, T., Fusselman, S. P., Grimmet, D. L., Roy, J. J., Gay, R. L., Krueger, C. L., Nabelek, C. R., and Storvick, T. S., 1999, “Separation of Uranium and Transuranic Elements From Rare Earth Elements by Means of Multistage Extraction in LiCl-KCl/Bi System,” J. Nucl. Sci. Tech., 36(2), pp. 189–197. 10.1080/18811248.1999.9726197
Moriyama, H., Yamana, H., Nishikawa, S., Miyashita, Y., Moritani, K., and Mitsugashira, T., 1997, “Equilibrium Distributions of Actinides and Lanthanides in Molten Chloride Salt and Liquid Zinc Binary Phase System,” J. Nucl. Mater., 247(1–3), pp. 197–202. 10.1016/S0022-3115(98)00097-X
Smolenski, V., Novoselova, A., Osipenko, A., Kormilitsyn, M., and Lukyanova, Ya., 2014, “Thermodynamics of Separation of Uranium From Neodymium Between the Gallium-Indium Liquid Alloy and the LiCl-KCl Molten Salt Phases,” Electrochimica Acta, 133, pp. 354–358. 10.1016/j.electacta.2014.04.042
Roy, J. J., Grantham, L. F., McCoy, L. R., Krueger, C. L., Storvick, T. S., Inoue, T., Miyashiro, H., and Takahashi, N., 1991, “Standard Potentials of Lanthanide and Actinide Trichlorides in Molten Eutectic LiCl–KCl Electrolyte,” Molten Salt Chem. Technol.: Mater. Sci. Forum (Trans. Tech. Publications: Switzerland/Germany/UK/USA), 73–75, pp. 547–554. 10.4028/www.scientific.net/MSF.73-75.547
Vnuchkova, L. A., Bayanov, A. P., Degtyar, V. A., and Serebrennikov, V. V., 1972, “Interaction of Metal Praseodymium With its Trichloride in Molten Equimolar Mixture of Lithium and Potassium Chlorides,” Izv. Vuzov. Tsvet. Metallurgy, (3), pp. 115–119.
Castrillejo, Y., Bermejo, M. R., Barrado, E., Martínez, A. M., and Díaz Arocas, P., 2003, “Solubilization of Rare Earth Oxides in the Eutectic LiCl-KCl Mixture at 450°C and in the Equimolar CaCl2-NaCl Melt at 550°C,” J. Electroanal. Chem., 545, pp. 141–157. 10.1016/S0022-0728(03)00092-5
Picard, G. S., Motto, Y. E., and Tremillon, B. L., 1986, “Acidic and Redox Properties of Some Lanthanide Ions in Molten LiCl-KCl Eutectic,” Molten Salts: Proceedings of the Electrochemical Society, The Electrochemical Society Inc., Pennington, 86-1, pp. 189–204.
Yang, L., and Hudson, R. G., 1959, “Equilibrium Electrode Potentials of Some Metal-chlorine Galvanic Cells and Activities of Some Metal Chlorides in LiCl-KCl Eutectic Melt,” Trans. Metal. Soc. AIME, 215, pp. 589–601.
Bayanov, A. P., Vnuchkova, L. A., and Serebrennikov, V. V., 1972, “State of NdCl3 in Equilibrium With Nd Metal in Equimolar Mixture of Potassium and Lithium Chlorides,” Izv. Vuzov. Tsvet. Metallurgiya, (4), pp. 77–80.
Kober, V. I., Nichkov, I. F., Raspopin, S. P., and Kuzminikh, V. M., 1979, “Thermodynamic Properties of Low Melting Metals Saturated by Praseodymium,” Proceedingsof the IV Soviet Conferenceon Thermodynamics Metal Systems, L. F. Kozin, ed., Nauka, Alma-Ata, Kazakhstan, Vol. 2, pp. 67–71.
Vnuchkova, L. A., Bayanov, A. P., and Serebrennikov, V. V., 1972, “Thermodynamics of Praseodymium-Gallium Alloys,” Zh. Fiz. Khim., 46(4), pp. 1051–1052.
Yatsenko, S. P., 1974, Gallium Interaction With Metals, Nauka, Moscow.
Schweitzer, D. G., and Weeks, J. R., 1961, “Liquid-Metal Fuel Constitution: III. Liquid Curves of the Bismuth Fission-Product System,” Trans. ASM, 54(2), pp. 185–200.
Lebedev, V. A., Kober, V. I., and Yamshchikov, L. F., 1989, Thermochemistry of Rare Earth and Actinides Alloys, Metallurgiya, Chelyabinsk, USSR, ISBN: 5-229-00066-X.
Degtyar, V. A., Bayanov, A. P., Vnuchkova, L. A., and Serebrennikov, V. V., 1971, “Thermodynamics of Liquid Praseodymium-Indium Alloys,” Zh. Fiz. Khim., 45(7), pp. 1816–1817.
Kober, V. I., Nichkov, I. F., Raspopin, S. P., and Kuzminikh, V. M., 1979, “Thermodynamic Properties of Saturated by Neodymium Alloys Based on Low Melting Metals,” Proceedingsof the IV Soviet Conference on Thermodynamics Metal Systems, L. F. Kozin, ed., Nauka, Alma-Ata, KSSR, Vol. 2, pp 72–76.
Vnuchkova, L. A., Bayanov, A. P., and Srebrennikov, V. V., 1972, “Thermodynamics of Interaction of Gallium With Neodymium,” Zh. Fiz. Khim., 46(4), p. 1052.
Kober, V. I., Dubinin, V. A., Nichkov, I. F., and Kanevskiy, S. R., 1986, “Thermodynamic Properties of Diluted Neodymium-Bismuths Alloys,” Zh. Fiz. Khim., 60(1), pp. 197–199.
Smith, F. J., 1972, “The Solubility of Thorium and Neodymium in Liquid Lithium-Bismuth Solutions,” J. Less-Common Met., 27(2), pp. 195–200. 10.1016/0022-5088(72)90030-6
Degtyar, V. A., Bayanov A. P., and Serebrennikov V. V., 1971, “Thermodynamics of Interaction of Neodymium With Indium,” Trans. Tomsk Univ., (204), pp. 401–402.
Dieva, E. N., 1974, “The Solubility of Rare Earth Elements in Liquid Indium,” Physicochemical Investigations of Liquid Metals and Alloys, Ural Scientific Centre of Academy of Sciences of USSR, Sverdlovsk, USSR, pp. 98–104.

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In