0
Research Papers

A Review on Analysis of LWR Severe Accident

[+] Author and Article Information
Y. P. Zhang, S. P. Niu, L. T. Zhang, S. Z. Qiu, W. X. Tian

Department of Nuclear Science and Technology,
Xi’an Jiaotong University,
Xi’an 710049, China

G. H. Su

Department of Nuclear Science and Technology,
Xi’an Jiaotong University,
Xi’an 710049, China
e-mail: ghsu@mail.xjtu.edu.cn

1Corresponding author.

Manuscript received October 11, 2014; final manuscript received April 8, 2015; published online September 3, 2015. Assoc. Editor: Tomio Okawa.

ASME J of Nuclear Rad Sci 1(4), 041018 (Sep 03, 2015) (20 pages) Paper No: NERS-14-1048; doi: 10.1115/1.4030364 History: Received October 11, 2014; Accepted April 16, 2015; Online September 16, 2015

A severe accident (SA) is defined as an incident involving melting of the nuclear reactor core and the release of fission products (FP) from the fuel and their associated risks. In the SA, the containment may fail, causing the public hazard of fission products released to the environment. This review elaborates the resolved issues of SAs under the condition of a hypothetical SA. SA research that has been performed over the years is briefly described, including various SA scenarios. The SA scenarios involve core melt scenarios from the beginning of core degradation to melt formation and relocation into the lower head and to the containment, the interactions of the molten corium with water and concrete, the behavior of fission products in- and ex-vessel, hydrogen-related phenomena, and all associated risks. The mitigation strategies that have been adopted in existing reactors and advanced light water reactors (ALWR) are also discussed. These mitigation measures can keep the reactor vessel or containment intact and terminate the SA progression. SA analysis codes are then summarized and divided into three categories, namely, systematic analysis codes, mechanism analysis codes, and single-function analysis codes. Next, the unresolved issues of SAs are proposed, including narrow gap cooling, melt chemical interactions, steam explosion loads, molten debris coolability, and iodine chemistry. Further experimental and theoretical research activities should be conducted to resolve these issues; consequently, some recommendations for further research work are also given in the last part of this review. This review aims to add to the knowledge and understanding of SA research in the past few decades and to benefit further research of SAs.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Sehgal, B. R., 2001, “Accomplishments and Challenges of the Severe Accident Research,” Nucl. Eng. Des., 210(1–3), pp. 79–94. 10.1016/S0029-5493(01)00433-2
Theofanous, T. G., Liu, C., Additon, S., Angelini, S., Kymäläinen, O., and Salmassi, T., 1996, “In-Vessel Cool-Ability and Retention of a Core Melt,” University of California, Santa Barbara, DOE/ID-10460.
Zhang, Y. P., Qiu, S. Z., Su, G. H., and Tian, W. X., 2010, “Analysis of Safety Margin of In-Vessel Retention for AP1000,” Nucl. Eng. Des., 240(8), pp. 2023–2033. 10.1016/j.nucengdes.2010.04.020
Esmaili, H., and Khatib-Rahbar, M., 2005, “Analysis of Likelihood of Lower Head Failure and Ex-Vessel Fuel Coolant Interaction Energetics for AP1000,” Nucl. Eng. Des., 235(15), pp. 1583–1605. 10.1016/j.nucengdes.2005.02.003
Rempe, J. L., and Knudson, D. L., 2004, “Margin for In-Vessel Retention in the APR1400–VESTA and SCDAP/RELAP5-3D Analyses,” Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID, INEEL/EXT-04-02549.
Hwang, I. S., and Suh, K. Y. 2001, “Gap Structure for Nuclear Reactor Vessel,” United States Patent US6, 195, 405 B1, Registered February.
Rempe, J. L., Knudson, D. L., Condie, K. G., Suh, K. Y., Cheung, F. B., and Kim, S. B., 2004, “Development of an Enhanced In-Vessel Core Catcher for Improving In-Vessel Retention Margins,” NURETH10, KNS, Seoul, Korea.
Rubin, A. M., and Beckjord, E., 1994, “Three Mile Island—New Findings 15 Years After the Accident,” Nucl. Saf., 35(2), pp. 256–269.
Wolf, J. R., Akers, D. W., and Neimark, L. A., 1994, “Relocation of Molten Material to the TMI-2 Lower Head,” Nucl. Saf., 35(2), pp. 269–279.
Akers, D. W., and Schuetz, B. K., 1994, “Physical and Radiochemical Examinations of Debris From the TMI-2 Lower Head,” Nucl. Saf., 35(2), pp. 288–300.
Diercks, D. R., and Korth, G. E., 1994, “Results of Metallographic Examinations and Mechanical Tests of Pressure Vessel Samples from the TMI-2 Lower Head,” Nucl. Saf., 35(2), pp. 301–312.
Jankowski, M. W., Powers, D. A., and Kress, T. S., 1987, “Onsite Response to the Accident at Chernobyl,” Nucl. Saf., 28(1), pp. 36–42.
Kress, T. S., Jankowski, M. W., and Joosten, J. K., 1987, “Powers DA. The Chernobyl Accident Sequence,” Nucl. Saf., 28(1), pp. 1–9.
Powers, D. A., Kress, T. S., and Jankowski, M. W., 1987, “The Chernobyl Source Term,” Nucl. Saf., 28(1), pp. 10–28.
Cardis, E., Howe, G., Ron, E., Bebeshko, V., Bogdanova, T., Bouville, A., Carr, Z., Chumak, V., Davis, S., Demidchik, Y., Drozdovitch, V., Gentner, N., Gudzenko, N., Hatch, M., Ivanov, V., Jacob, P., Kapitonova, E., Kenigsberg, Y., Kesminiene, A., Kopecky, K. J., Kryuchkov, V., Loos, A., Pinchera, A., Reiners, C., Repacholi, M., Shibata, Y., Shore, R. E., Thomas, G., Tirmarche, M., Yamashita, S., and Zvonova, I., 2006, “Cancer Consequences of the Chernobyl Accident: 20 Years on,” J. Radiol. Prot., 26(4), pp. 127–140. 10.1088/0952-4746/26/2/001 [PubMed]
Rempe, J. L., Suh, K. Y., Cheung, F. B., and Kim, S. B., 2004, “In-Vessel Retention—Recent Efforts and Future Needs,” The 6th International Conference on Nuclear Thermal Hydraulics, Operations and Safety (NUTHOS-6), Nara, Japan, INEEL/CON-04-01887.
Fischer, M., 2004, “The Severe Accident Mitigation Concept and the Design Measures for Core Melt Retention of the European Pressurized Reactor (EPR),” Nucl. Eng. Des., 230(1–3), pp. 169–180. 10.1016/j.nucengdes.2003.11.034
Fischer, M., Herbst, O., and Schmidt, H., 2005, “Demonstration of the Heat Removing Capabilities of the EPR Core Catcher,” Nucl. Eng. Des., 235(10–12), pp. 1189–1200. 10.1016/j.nucengdes.2005.02.022
Sehgal, B. R., 2010, “Status of Severe Accident Research for Resolution of LWR Safety Issues,” 8th International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-8), Shanghai, China (invited paper).
Miassoedov, A., Jordan, T., Meyer, L., Steinbrueck, M., and Tromm W., 2010, “Overview of Severe Accident Research Activities at the Karlsruhe Institute of Technology,” 8th International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-8), Shanghai, China.
Van Goethem, G., Balz, W., and Della Loggia, E., 1995, “FISA-95, European Union Research on Severe Accidents,” DG XII of the European Commission, Luxembourg, European Union Report 16896.
Haste, T., Adroguer, B., Brockmeier, U., Hofmann, P., Muller, K., and Pezzilli, M., 1996, “In-Vessel Core Degradation in LWR Severe Accidents,” European Commission, Luxembourg, European Union Report 16695.
Hofmann, P., 1999, “Current Knowledge on Core Degradation Phenomena, a Review,” J. Nucl. Mater., 270(1–2), pp. 194–211. 10.1016/S0022-3115(98)00899-X
Hobbins, R. R., Petti, D. A., Osetek, D. J., and Hagrman, D. L., 1991, “Review of Experimental Results on Light Water Reactor Core Melt Progression,” Nucl. Technol., 95(3), pp. 287–307.
Hofmann, P., Hagen, S., Noack, V., Schanz, G., and Sepold, L., 1997, “Chemical-Physical Behavior of Light Water Reactor Core Components Tested Under Severe Reactor Accident Conditions in the CORA Facility,” Nucl. Technol., 118(3), pp. 200–224.
Wright, R. W., 1996, “Current Status of Core Degradation and Melt Progression in Severe LWR Accidents,” Nucl. Sci. Technol., 24, pp. 283–313. 10.1007/b105274
Olsen, C. S., Steven M. J., and Eric R. C., 1989, “Materials Interactions and Temperatures in the Three Mile Island Unit 2 Core,” Nucl. Technol., 87(1), pp. 57–77.
Gonnier, C., Georoy, G., and Adroguer, B., 1991, “PHEBUS SFD Programme, Main Results,” ANS Proceedings, ANS Meeting, Portland, p. 76.
Von der Hardt, P., Jones, A., Lecomte, C., and Tattegrain, A., 1994, “Nuclear Safety Research: the Phebus FP Severe Accident Experimental Programme,” Nucl. Saf., 35, p. 2.
Kleykamp, H., and Pejsa, R., 1991, “Chemical and X-Ray Diffraction Analysis on Selected Samples From the TMI-2 Reactor Core,” Kernforschungszentrum Karlsruhe, KfK-4872.
Olander, D. R., 1983, “The UO2-Zircaloy Chemical Interaction,” J. Nucl. Mater., 115(2–3), pp. 271–285. 10.1016/0022-3115(83)90318-5
Hofmann, P., and Kerwin-Peck, D. K., 1984, “UO2/Zircaloy-4 Chemical Interactions From 1000 To 1700°C Under Isothermal and Transient Temperature Conditions,” J. Nucl. Mater., 124, pp. 80–105. 10.1016/0022-3115(84)90013-8
Hofmann, P., Neitzel, J. H., and Garcia, E. A., 1988, “ Chemical Interactions of Zircaloy With UO 2 Fuel and Oxygen Between 900 and 2000°C, Experiments and PECLOX Code,” Kernforschungszentrum Karlsruhe, Report No. KfK-4422.
Hofmann, P., Uetsuka, H., Wilhelm, A. N., and Garcia, E. A., 1988, “Dissolution of Solid UO 2 by Molten Zircaloy and its Modeling,” International Symposium on Severe Accidents in Nuclear Power Plants, Sorrento, Italy, IAEA-SM-2986/1.
Hofmann, P., and Markiewiez, M., 1990, “Reaction Behavior of B4C Absorber Material With Stainless Steel and Zircaloy in Severe Light Water Reactor Accidents,” J. Spino, Nucl. Technol., 90(2), pp. 226–244.
Hofmann, P., and Markiewicz, M., 1994, “Liquefaction of Zircaloy-4 by Molten (Ag, In, Cd) Absorber Alloy,” J. Nucl. Mater., 209(1), pp. 92–106. 10.1016/0022-3115(94)90250-X
Hofmann, P., and Markiewicz, M., 1994, “Chemical Interactions Between As-Received and Pre-Oxidized Zircaloy and Inconel 718 at High Temperatures,” Kernforschungszentrum Karlsruhe, KfK-4729.
Hofmann, P., and Markiewicz, M., 1994, “Chemical Interactions Between As-Received and Pre-Oxidized Zircaloy and Stainless Steel at High Temperatures,” Kernforschungszentrum Karlsruhe, KfK-5106.
Hagen, S., Hofmann, P., Schanz G., and Sepold, L., 1990, “Interaction in Zry / UO 2 Fuel Rod Bundles With Inconel Spacers at Temperatures Above 1200°C (Posttest Results of Severe Fuel Damage Experiments CORA-2 and CORA-3),” Kernforschungszentrum Karlsruhe, KfK 4378.
Hagen, S., and Hain, K., 1986, “Out-of-Pile Bundle Experiments on Severe Fuel Damage (CORA-Program) Objectives, Test Matrix and Facility Description,” Kernforschungszentrum Karlsruhe, KfK 3677.
Hagen, S., Sepold, L., Hofmann, P., and Schanz, G., 1988, “Out-of-Pile Experiments on LWR Severe Fuel Damage Behavior, Tests CORA-C and CORA-2,” Kernforschungszentrum Karlsruhe, KfK 4404.
Kim, K. T., and Olander, D. R., 1988, “Dissolution of Uranium Dioxide by Molten Zircaloy: I. Diffusion-Controlled Reaction,” J. Nucl. Mater., 154(1), pp. 102–115. 10.1016/0022-3115(88)90123-7
MinatoI, K., Hering, W., and Hagen, S., 1991, “Zircaloy Oxidation and Cladding Deformation in PWR-Specific CORA Experiments,” Kernforschungszentrum Karlsruhe, KfK4827.
Hohorst, J. K., and Allison, C. M., 1991, “Interpretation of Experimental Results From the CORA Core Melt Progression Experiments,” Winter Meeting of the American Nuclear Society (ANS), San Francisco, CA, DE-AC07-761D01570.
Veshchunov, M., and Hofmann, P., 1994, “Modelling of B4C Interactions With Zircaloy at High Temperatures,” J. Nucl. Mater., 210(1–2), pp. 11–20. 10.1016/0022-3115(94)90217-8
Veshchunov, M. S., and Hofmann, P., 1994, “Dissolution of Solid UO2 by Molten Zircaloy,” J. Nucl. Mater., 209(1), pp. 27–40. 10.1016/0022-3115(94)90244-5
Veshchunov, M., and Hofmann, P., 1995, “Modelling of the Interactions Between B4C and Stainless Steel at High Temperatures,” J. Nucl. Mater., 226(1–2), pp. 72–91. 10.1016/0022-3115(95)00094-1
Veshchunov, M. S., Hofmann, P., and Berdyshev, A. V., 1996, “Critical Evaluation of Uranium Oxide Dissolution by Molten Zircaloy in Different Crucible Tests,” J. Nucl. Mater., 231(1–2), pp. 1–19. 10.1016/0022-3115(96)00367-4
Veshchunov, M. S., and Hofmann, P., 1996, “Modelling of Zircaloy Dissolution by Molten (Ag, In, Cd) Absorber Alloy,” J. Nucl. Mater., 228(3), pp. 318–329. 10.1016/0022-3115(95)00235-9
Hayward, P. J., and George, I. M., 1994, “Dissolution of UO2 in Molten Zircaloy-4 Part 2: Phase Evolution During Dissolution and Cooling,” J. Nucl. Mater., 208(1–2), pp. 43–52. 10.1016/0022-3115(94)90196-1
Ott, L. J., and Hagen, S., 1997, “Interpretation of the Results of the CORA-33 Dry Core Boiling Water Reactor Test,” Nucl. Eng. Des., 167(3), pp. 287–306. 10.1016/S0029-5493(96)01305-2
Abalin, S. S., Asmolov, V. G., Daragan, V. D., and D’yakov, E. K., 1997, “Corium Kinematic Viscosity Measurement,” Proceedings of the 8th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Atomic Energy Society of Japan and the American Nuclear Society (ANS), Kyoto, Japan, Vol. 2, pp. 581–586.
Noack, V., Hagen, S., Hofmann, P., Schanz, G., and Sepold, L., 1997, “Material Distribution in Light Water Reactor-Type Bundles Tested Under Severe Accident Conditions,” Nucl. Technol., 117(2), pp. 158–170.
Hagen, S., Hofmann, P., Noack, V., Sepold, L., Schanz, G., and Schumacher, G., 1997, “Cold Lower End Test CORA-10: Test Results,” Forschungszentrum Karlsruhe, FZKA-5572.
Hagen, S., Hofmann, P., Noack, V., Sepold, L., Schanz, G., and Schumacher, G., 1994, “Behavior of a VVER-1000 Fuel Element Tested Under Severe Accident Conditions in the CORA Facility,” Kernforschungszentrum Karlsruhe, KfK-5212.
Hagen, S., Hofmann, P., Noack, V., Sepold, L., Schanz, G., and Schumacher, G., 1994, “Behavior of a VVER-1000 Fuel Element With B 4 C Absorber Tested Under Severe Fuel Damage Conditions,” Kernforschungszentrum Karlsruhe, KfK-5363.
Miassoedov, A., Alsmeyer, H., and Meyer, L., 2003, “LACOMERA—Large Scale Experiments on Core Degradation,” Melt Retention and Coolability at the Forschungszentrum KarslruheInternational Conference Nuclear Energy for New Europe 2003, Portorož, Slovenia.
Miassoedov, A., Alsmeyer, H., Eppinger, B., Meyer, L., and Steinbrück, M., 2004, “Recent Progress in the LACOMERA Project (Large-Scale Experiments on Core Degradation, Melt Retention and Coolability) at the Forschungszentrum Karslruhe,” International Conference Nuclear Energy for New Europe, Portorož, Slovenia.
Zhang, L. T., Zhou, Y. K., Zhang, Y. P., Tian, W. X., Qiu, S. Z., and Su, G. H., 2015, “Natural Convection Heat Transfer in Corium Pools: A Review Work of Experimental Studies,” Prog. Nucl. Energy, 79, pp. 167–181. 10.1016/j.pnucene.2014.11.021
Pham, Q. T., Seiler, J. M., Combeau, H., Gaus-Liu, X. Y., Kretzschmar, F., and Miassoedov, A., 2013, “Modeling of Heat Transfer and Solidification in LIVE L3A Experiment,” Int. J. Heat Mass Trans., 58(1–2), pp. 691–701. 10.1016/j.ijheatmasstransfer.2012.11.030
Dinh, T. N., Nourgaliev, R. R., and Sehgal, B. R., 1997, “On Heat Transfer Characteristics of Real and Simulant Melt Pool Experiments,” Nucl. Eng. Des., 169(1–3), pp. 151–164. 10.1016/S0029-5493(96)01283-6
Ma, X., Toffolon-Masclet, C., Guilbert, T., and Brachet, J. C., 2008, “Oxidation Kinetics and Oxygen Diffusion in Low-Tin Zircaloy-4 up to 1523K,” J. Nucl. Mater., 377(2), pp. 359–369. 10.1016/j.jnucmat.2008.03.012
Chekhovskoi, V. Y., and Tarasov, V. D., 2008, “A Procedure for Rapid Studies of the Metal Oxidation Kinetics at High Temperatures,” Instrum. Exp. Tech., 51(3), pp. 476–479. 10.1134/S0020441208030287
Baek, J. H., Park, K. B., and Jeong, Y. H., 2004, “Oxidation Kinetics of Zircaloy-4 and Zr-1Nb-1Sn-0.1Fe at Temperatures of 700–1200 Degrees C,” J. Nucl. Mater., 335(3), pp. 443–456. 10.1016/j.jnucmat.2004.08.007
Schanz, G., Adroguer, B., and Volchek, A., 2004, “Advanced Treatment of Zircaloy Cladding High-Temperature Oxidation in Severe Accident Code Calculations. Part I. Experimental Database and Basic Modeling,” Nucl. Eng. Des., 232(1), pp. 75–84. 10.1016/j.nucengdes.2004.02.013
Volchek, A., Zvonarev, Y., and Schanz, G., 2004, “Advanced Treatment of Zircaloy Cladding High-Temperature Oxidation in Severe Accident Code Calculations. Part II. Best-Fitted Parabolic Correlations,” Nucl. Eng. Des., 232(1), pp. 85–96. 10.1016/j.nucengdes.2004.02.014
Sepold, L., Hofmann, P., Leiling, W., Miassoedov, A., Piel, D., Schmidt, L., and Steinbrück, M., 1999, “Reflooding Experiments With LWR-Type Fuel Rod Simulators in the QUENCH Facility,” Proceedings of NURETH-9, San Francisco, Amsterdam, PAYS-BAS.
Sepold, L., Miassoedov, A., Schanz, G., Stegmaier, U., Steinbrück, M., Stuckert, J., and Homann, C., 2004, “Hydrogen Generation in Reflooding Experiments With LWR-Type Rod Bundles (QUENCH Program),” Nucl. Technol., 147(2), pp. 202–215.
Sepold, L., Hering, W., Schanz, G., Scholtyssek, W., Steinbrück, M., and Stuckert, J., 2007, “Severe Fuel Damage Experiments Performed in the QUENCH Facility With 21-Rod Bundles of LWR-Type,” Nucl. Eng. Des., 237(22), pp. 2157–2164. 10.1016/j.nucengdes.2007.03.020
Hagen, S., Hofmann, P., Noack, V., Sepold, L., and Schanz, G., 1996, “Comparison of the Quench Experiments CORA-12, CORA-13 and CORA-17,” Forschungszentrum Karlsruhe GmbH, FZKA-5679.
Hagen, S., Hofmann, P., Noack, V., Schanz, G., Schumacher, G., and Sepold, L., 1997, “The CORA-Program: Out-of-Pile Experiments on Severe Fuel Damage,” Proceedings of the Fifth International Topical Meeting on Nuclear Thermal-Hydraulics, Operations and Safety, Beijing, China.
Hofmann, P., Noack, V., Veshchunov, M. S., Berdyshev, A. V., Boldyrev, A. V., Matweev, L. V., Palagin, A. V., and Shestak, V. E., 1997, “Physicochemical Behavior of Zircaloy Fuel Rod Cladding Tubes During LWR Severe Accident Reflood,” Forschungszentrum Karlsruhe GmbH, FZKA-5846.
Hofmann, P., Homann, C., Leiling, W., Miassoedov, A., Piel, D., Schmidt, L., Sepold, L., and Steinbrück, M., 1998, “Results of the Commissioning Tests in the QUENCH Facility,” Forschungszentrum Karlsruhe GmbH, FZKA-6099.
Hofmann, P., Hering, W., Homann, C., Leiliing, W., Miassoedov, A., Piel, L., Schmidt, L., Sepold, L., and Steinbrück, M., 1998, “QUENCH-01, Experimental and Calculational Results,” Forschungszentrum Karlsruhe, FZKA 6100.
Hofmann, P., Homann, C., Leiling, W., Miassoedov, A., Piel, L., Schmidt, L., Sepold, L., and Steinbrück, M., 2000, “Experimental and Calculational Results of the Experiments QUENCH-02 and QUENCH-03,” Forschungszentrum Karlsruhe, FZKA 6295.
Sepold, L., Hofmann, P., Homann, C., Leiling, W., Miassoedov, A., Piel, L., Schanz, G., Schmidt, L., Stegmaier, U., Steinbrück, M., and Steiner, H., 2002, “Investigation of an Overheated PWR-Type Fuel Rod Simulator Bundle Cooled Down by Steam Part I: Experimental and Calculational Results of the QUENCH-04 Test,” Forschungszentrum Karlsruhe, FZKA 6412.
Sepold, L., Homann, C., Hering, W., Miassoedov, A., Schanz, G., Stegmaier, U., Steinbrück, M., and Steiner, H., 2002, “Experimental and Calculational Results of the QUENCH-05 Test,” Forschungszentrum Karlsruhe, FZKA 6615.
Sepold, L., Homann, C., Miassoedov, A., Piel, L., Schanz, L., Schmidt, L., Stegmaier, U., Steinbrück, M., and Steiner, H., 2004, “Experimental and Calculational Results of the QUENCH-06 Test (OECD ISP-45),” Forschungszentrum Karlsruhe, FZKA 6664.
Sepold, L., Lind, T., Pintér Csordás, A., Stegmaier, U., Steinbrück, M., and Stuckert, J., 2009, “Ag-In-Cd Control Rod Failure in the QUENCH-13 Bundle Test,” Ann. Nucl. Energy, 36(9), pp. 1349–1359. 10.1016/j.anucene.2009.06.020
Stefanova, A., Groudev, P., Sepold, L., Steinbrück, M., Stuckert, J., Hering, W., Homann, C., Guillard, G., Duspiva, J., Erdmann, W., Hollands, T., Drath, T., Negut, G., Vasiliev, A., and Šadek, S., 2007, “Benchmark Exercise on QUENCH-11 Experiment,” The 2nd European Review Meeting on Severe Accident Research (ERMSAR-2007), Forschungszentrum Karlsruhe GmbH (FZK), Germany.
Steinbrück, M., Homann, C., Miassoedov, A., Schanz, G., Sepold, L., Stegmaier, U., Steiner, H., and Stuckert, J., 2004, “Results of the B 4 C Control Rod Test QUENCH-07,” Forschungszentrum Karlsruhe, FZKA 6746.
Steinbrück, M., Homann, C., Miassoedov, A., Schanz, G., Sepold, L., Stegmaier, U., Steiner, H., and Stuckert, J., 2004, “Results of the QUENCH-09 Experiment With a B 4 C Control Rod,” Forschungszentrum Karlsruhe, FZKA 6829.
Stuckert, J., Birchley, J., Grose, M., Haste, T., Sepold, L., and Steinbrück, M., 2009, “Experimental and Post-Test Calculation Results of the Integral Reflood Test QUENCH-12 With a VVER-Type Bundle,” Ann. Nucl. Energy, 36(2), pp. 183–192. 10.1016/j.anucene.2008.11.024
Stuckert, J., Birchley, J., Grosse, M., Jaeckel, B., and Steinbrück, M., 2010, “Experimental and Calculation Results of the Integral Reflood Test QUENCH-14 With M5 Cladding Tube,” Ann. Nucl. Energy, 37(8), pp. 1036–1047. 10.1016/j.anucene.2010.04.015
Steinbrück, M., 2004, “Analysis of Hydrogen Production in QUENCH Bundle Test,” Forschungszentrum Karlsruhe, FZKA 6968.
Steiner, H., and Heck, M., 2006, “Calculations of QUENCH Tests With the FZK Bundle Code CALUMO,” Forschungszentrum Karlsruhe, FZKA 7192.
Siefken, L. J., 1999, “Calculation of Hydrogen and Oxygen Uptake in Fuel Rod Cladding During Severe Accidents Using the Integral Diffusion Method Final Design,” Idaho National Engineering and Environmental Laboratory, Lockheed Martin Idaho Technologies Company, Idaho Falls, ID, Report No. INEEL/EXT-99-00571.
Hering, W., and Homann, C., 2005, “Degraded Core Reflood: Present Knowledge Based on Experimental and Analytical Data,” International Conference Nuclear Energy for New Europe, Bled, Slovenia.
Wright, A. L., 1994, “Primary System Fission Product Release and Transport,” Oak Ridge National Laboratory, Oak Ridge, TN, NUREG/CR-6193.
Allen, M. D., Stockman, H. D., Reil, K. O., and Fisk, J. W., 1991, “Fission Product Release and Fuel Behavior of Irradiated Light Water Reactor Fuel Under Severe Accident Conditions: The ACRR ST-1 Experiment,” Sandia National Laboratory, Albuquerque, NM, USNRC Report NUREG/CR-5345.
Schuster, E., 1991, “FP Release and Deposition in LOFT-PL-FP-1,” Proceedings of Open Forum on the OECD/LOFT Project, Achievements and Significant Results, Madrid, Spain.
Schwarz, M., Hache, G., and von der Hardt, P., 1999, “PHEBUS FP: A Severe Accident Research Programme for Current and Advanced Light Water Reactors,” Nucl. Eng. Des., 187(1), pp. 47–69. 10.1016/S0029-5493(98)00257-X
Clément, B., Hanniet-Girault, N., and Repetto, G., 2003, “LWR Severe Accident Simulation: Synthesis of the Results and Interpretation of the First Phebus FP Experiment FPT0,” Nucl. Eng. Des., 226(1), pp. 5–82. 10.1016/S0029-5493(03)00157-2
Herranz, L. E., Fontanet, J., and Cantrel, L., 2009, “Modeling Liquid—Gas Iodine Mass Transfer Under Evaporative Conditions During Severe Accidents,” Nucl. Eng. Des., 239(4), pp. 728–734. 10.1016/j.nucengdes.2009.01.006
Gyenes, G., and Ammirabile, L., 2011, “Containment Analysis on the PHEBUS FPT-0, FPT-1 and FPT-2 Experiments,” Nucl. Eng. Des., 241(3), pp. 854–864. 10.1016/j.nucengdes.2010.12.007
Baker, L., Fink, J. K., Simms, R., Schlenger, B. J., and Herceg, J. E., 1988, “Source Term Experiments Project (STEP): A Summary,” Electric Power Research Institute, Palo Alto, CA, NP-5753M.
Knipe, A. D., Ploger, S. A., and Osetek, D. J., 1986, “PBF Severe Fuel Damage Scoping Test Results Report,” USNRC Report NUREG/CR-4683.
Lanning, D. D., Lombardo, N. J., Fitzsimmon, D. E., Hensley, W. K., and Panisko, F. E., 1988, “Pacific Northwest Laboratory Data Report: Full-Length High-Temperature Experiment 5,” PNL-6540.
Broughton, J. M., Kuan, P., Petti, D. A., and Tolman, E. L., 1989, “A Scenario of the Three Mile Island Unit 2 Accident,” Nucl. Technol., 87(1), pp. 34–53.
Petti, D. A., Adams, J. P., Anderson, J. L., and Hobbins, R. R., 1989, “Analysis of Fission Product Release Behavior From the Three Mile Island Unit 2 Core,” Nucl. Technol., 87(1), pp. 243–263.
Clément, B., and Zeyen, R., 2013, “The Objectives of the Phébus FP Experimental Programme and Main Findings,” Ann. Nucl. Energy, 61, pp. 4–10. 10.1016/j.anucene.2013.03.037
Heames, T. J., Williams, D. A., Johns, N. A., Mason, A., Bixler, N. E., Grimley, A. J., Wheatley, C. J., Dickson, L. W., Osborm, L. I., Domagala, P., Zawadzki, S., Rest, J., Alexander, C. A., and Lee, R. Y., 1992, “VICTORIA: A Mechanistic Model of Radionuclide Behavior in the Reactor Coolant System Under Severe Accident Conditions,” NRC, Washington, DC, NUREG/CR-5545.
Eduardo, H., and Samim, A., 2004, “FPTRAN: A Volatile Fission Products and Structural Materials Transport Code for SCDAP/RELAP5,” Proceedings of the 2004 International Congress on Advances in Nuclear Power Plants—ICAPP’04, Pittsburgh, PA, p. 2338.
Wolf, J. R., Rempe, J. L., Stickler, L. A., Korth, G. E., Diercks, D. R., Neimark, L. A., Aker, D. W., Schuetz, B. K., Shearer, T. L., Chávez, S. A., Thinnes, G. L., Witt, R. J., Corradini, M. L., and Kos, J. A.,1994, “TMI-2 Vessel Investigation Project Integration Report,” Idaho National Engineering Laboratory, Idaho Falls, ID, NUREG/CR-6197, TM1 V (93) EG10 EGG-2734.
Sehgal, B. R., Green, J. A., and Dinh, T. N., 1997, “Experiments and Analyses of Melt Jet Impingement During Severe Accidents,” Proceedings of the NUTHOS-5, Beijing, China.
Theofanous, T. G., Liu, C., Additon, S., Angelini, S., Kymäläinen, O., and Salmassi, T., 1997, “In-Vessel Coolability and Retention of a Core Melt,” Nucl. Eng. Des., 169(1–3), pp. 1–48. 10.1016/S0029-5493(97)00009-5
Theofanous, T. G., Yuen, W. W., Angelini, S., Sienicki, J. J., Freeman, K., Chen, X., and Salmassi, T., 1996, “Lower Head Integrity Under In-Vessel Steam Explosion Loads,” Nucl. Eng. Des., 189(1–3), 7–57.
Siefken, L. J., Coryell, E. W., and Paik, S., 1998, “SCDAP/RELAP5 Modeling of Heat Transfer and Flow Losses in Lower Head Porous Debris,” Idaho National Engineering Laboratory, Idaho Falls, ID, INEEL/EXT-98-00820.
Sehgal, B. R., Nourgaliev, R. R., Dinh, T. N., and Karbojian, A. K., 1998, “Integral Experiments on In-Vessel Coolability and Vessel Creep: Results and Analysis of the FOREVERC1 Test,” Proceedings of the Workshop on Severe Accident Research in Japan, SARJ-98, Yokohama, Japan.
Chu, T. Y., Pilch, M. M., Bentz, J. H., Ludwigsen, J. S., Lu, W. Y., and Humphries L. L., 1999, “Lower Head Failure Experiments and Analyses,” Sandia National Laboratories, Albuquerque, NM, Report No. NUREG/CR-5582, SAND98-2047.
Bechta, S. V., Khabensky, V. B, Vitol, S. A., Krushinov, E. V., Lopukh, D. B., Petrov, Y. B., Petchenkov, A. Y., Kulagin, I. V., Granovsky, V. S., Kovtunova, S. V., Martinov, V. V., and Gusarov, V. V., 2001, “Experimental Studies of Oxidic Molten Corium–Vessel Steel Interaction,” Nucl. Eng. Des., 210(1–3), pp. 193–224. 10.1016/S0029-5493(01)00377-6
Bechta, S. V., Khabensky, V. B., Vitol, S. A., Krushinov, E. V., Granovsky, V. S., Lopukh, D. B., Gusarov, V. V., Martinov, A. P., Martinov, V. V., Fieg, G., Tromm, W., Bottomley, D., and Tuomisto, H., 2006, “Corrosion of Vessel Steel During Its Interaction With Molten Corium Part 1: Experimental,” Nucl. Eng. Des., 236(13), pp. 1810–1829. 10.1016/j.nucengdes.2005.12.011
Bechta, S. V., Krushinov, E. V., Almjashev, V. I., Vitol’, S. A., Mezentseva, L. P., Petrov, Yu. B., Lopukh, D. B., Lomanova, N. A., Khabenskii, V. B., Barrachin, M., Hellmann, S., Froment, K., Fisher, M., Tromm, W., Bottomley, D., and Gusarov, V. V., 2007, “Phase Transformation in the Binary Section of the UO 2 -FeO-Fe System,” Radiochemistry, 49(1), pp. 20–24. 10.1134/S1066362207010031
Bechta, S. V., Granovsky, V. S., Khabensky, V. B., Krushinov, E. V., Vitol, S. A., Sulatsky, A. A., Gusarov, V. V., Almiashev, V. I., Lopukh, D. B., Bottomley, D., Fischer, M., Piluso, P., Miassoedov, A., Tromm, W., Altstadt, E., Fichot, F., and Kymalainen, O., 2009, “VVER Vessel Steel Corrosion at Interaction With Molten Corium in Oxidizing Atmosphere,” Nucl. Eng. Des., 239(6), pp. 1103–1112. 10.1016/j.nucengdes.2008.12.009
Gusarov, V. V., Martinov, A. P., Martinov, V. V., Fieg, G., Trommd, W., Bottomley, D., and Tuomisto, H., 2006, “Corrosion of Vessel Steel During its Interaction With Molten Corium Part 2: Model Development,” Nucl. Eng. Des., 236(13), pp. 1362–1370. 10.1016/j.nucengdes.2005.12.008
Sehgal, B. R., Nourgaliev, R. R., Dinh, T. N., and Karbojian, A. K., 1999, “FOREVER Experimental Program on Reactor Pressure Vessel Creep Behavior and Core Debris Retention,” Proceedings of the 15th International Conference on Structural Mechanics in Reactor Technology (SMiRT-15), Seoul, Korea.
Theerthan, A., Karbojian, A., and Sehgal, B. R., 2001, “FOREVER Experiments on Thermal and Mechanical Behaviour of Reactor Pressure Vessel During a Severe Accident, The EC-FOREVER-1 Test,” Transactions, SMiRT16, Washington DC, p. 1395.
Sehgal, B. R., Kymäläinen, O., and Bonnet, J. M., 1999, “Core Melt Pressure Vessel Interactions During a Light Water Reactor Severe Accident (MVI Project),” Proceedings of FISA-99 Meeting of EU Research on Severe Accidents, Luxembourg.
Sehgal, B. R., Nourgaliev, R. R., and Dinh, T. N., 2002, “Characterization of Heat Transfer Processes in a Melt Pool Convection and Vessel-Creep Experiment,” Nucl. Eng. Des., 211(2–3), pp. 173–187. 10.1016/S0029-5493(01)00434-4
Wittmaack, R., 1997, “CORFLOW: A Code for the Numerical Simulation of Free-Surface Flow,” Nucl. Technol., 119(2), pp. 158–180.
Michel, B. D., Piar, B., Babik, F., Latché, J.-C., Guillard, G., and De Pascale, C., 2000, “Synthesis of the Validation of the CROCO v1 Spreading Code,” Wiss. Ber. FZKA, 408, 420.
Allelein, H.-J., Breest, A., and Spengler, C., 2000, “Simulation of Core Melt Spreading With LAVA: Theoretical Background and Status of Validation,” Wiss. Ber. FZKA, 6475, 189–200.
Farmer, M. T., Sienicki, J. J., and Spencer, B. W., 1990, “The MELTSPREAD 1 Code for Analysis of Transient Spreading on Containment,” ANS 1990 Winter Meeting, Washington, DC.
Chudanov, V. V., Popov, A. G., Strizhov, V. F., Vabishchevich, P. N., and Churbanov, A. G., 1994, “Model of Spreading on the Concrete Substrate During Severe Accidents at Nuclear Plants,” ARS’94, Pittsburgh, PA.
Hidaka, M., Sato, N., and Ujita, H., 2002, “Verification for Flow Analysis Capability in the Model of Three Dimensional Natural Convection With Simultaneous Spreading, Melting and Solidification for the Debris Coolability Analysis Module in the Severe Accident Analysis Code ‘SAMPSON’, (II),” J. Nucl. Sci. Technol., 39(5), pp. 520–530. 10.1080/18811248.2002.9715230
Spindler, B., and Veteau, J. M., 2004, “Simulation of Spreading With Solidification: Assessment Synthesis of THEMA Code,” Commissariat à l’Energie Atomique, Repport CEA-R6053.
Dinh, T. N., Konovalikhin, M. J., and Sehgal, B. R., 2000, “Core Melt Spreading on a Reactor Containment Floor,” Progr. Nucl. Energ., 36(4), pp. 405–468. 10.1016/S0149-1970(00)00088-3
Greene, G. A., Finrock, C., Klages, J., and Schwarz, C. E., 1988, “Experimental Studies on Melt Spreading, Bubbling Heat Transfer and Coolant Layer Boiling,” Proceedings of the 16th Water Reactor Safety Meeting (Nuclear Regulatory Commission Report NUREG/CP-0096), pp. 341–358.
Fieg, G., Huber, F., Werle, H., and Wittmaack, R., 1996, “Simulation Experiments on the Spreading Behavior of Molten Core Melts,” Proceedings of the 1996 National Heat Transfer Conference, Houston, TX.
Samaille, M., Veteau, J. M., and Fournet, R., 2000, “CORINE Program: Isothermal Spreading Experiments at Large and Intermediate Viscosity With Gas Fed Through the Bottom Plate,” Note SETEX/LTEM/00-226.
Suzuki, H., Matsumoto, T., Sakaki, I., Mitadera, T., Matsumoto, M., and Zama, T., 1993, “Fundamental Experiment and Analysis for Melt Spreading on Concrete Floor,” Proceedings of the 2nd ASME/JSME Nuclear Engineering Conference, Vol. 1, pp. 403–407.
Tromm, W., Foit, J. J., and Magallon, D., 2000, “Dry and Wet Spreading Experiments With Prototypic Materials at the FARO Facility and Theoretical Analysis,” Wiss. Ber. FZKA, 6475, pp. 178–188.
Steinwarz, W., Alemberti, A., Häfner, W., Alkan, Z., and Fischer, M., 2001, “Investigations on the Methodology of Ex-Vessel Core Melt Behaviour (COMAS),” Nucl. Eng. Des., 209(1–3), pp. 139–146. 10.1016/S0029-5493(01)00396-X
Journeau, C., Boccaccio, E., Brayer, C., Cognet, G., Haquet, J.-F., Jégou, C., Piluso, P., and Monerris, J., 2003, “Ex-Vessel Corium Spreading: Results From the VULCANO Spreading Tests,” Nucl. Eng. Des., 223(1), pp. 75–102. 10.1016/S0029-5493(02)00397-7
Strizhov, V., Kanukova, V., Vinogradova, T., Askenov, E., and Nikulshin, V., 1996, “An Assessment of the CORCON-MOD3 Code. Part I: Thermal-Hydraulic Calculations,” NRC, Washington, DC, NUREG/IA-0129.
Basu, S., Farmer, M. T., and Lomperski, S., 2005, “Significance of the OECD-MCCI Program in Relation to Severe Accident Uncertainties Evaluation,” Evaluation of Uncertainties in Relation to Severe Accidents and Level 2 Probabilistic Safety Analysis, Workshop Proceedings, Aix-en-Provence, France.
Doubleva, G., Alsmeyer, H., Cron, T., Fluhrer, B., Foit, J., Messemer, G., Miassoedov, A., Schmidt-Stiefel, S., Wenz, T., Ivanov, I., and Cranga, M., 2006, “The COMET-L1 Experiment on Long-Term MCCI and Late Melt Surface Flooding,” Forschungszentrum Karlsruhe, FZKA-7213.
Reimann, M., and Stiefel, S., 1990, “The WECHSEL-Mod2 Code: A Computer Program for the Interaction of a Core Melt With Concrete Including the Long Term Behavior,” Model Description and User’s Manual, Forschungszentrum Karlsruhe, KfK Report KfK-4477.
Spindler, B., Tourniaire, B., and Seiler, J. M., 2006, “Simulation of MCCI with the TOLBIAC-ICB code based on the phase segregation model,” Nucl. Eng. Des., 236(19–21), pp. 2264–2270. 10.1016/j.nucengdes.2006.03.023
Nie, M., Fischer, M., and Lohnert, G., 2002, “Advanced MCCI Modelling Based on Stringent Coupling of Thermalhydraulics and Real Solution of Thermochemistry in COSACO,” Proceedings of the 10th International Conference on Nuclear Engineering, ICONE10, Arlington, TX.
Cranga, M., Fabianelli, R., Jacq, F., Barrachin, M., and Duval, F., 2005, “The MEDICIS Code: A Versatile Tool for MCCI Modelling,” Proceedings of ICAPP ‘05, Seoul, Korea.
Nourbakhsh, H. E., 1993, “Estimate of Radionuclide Release Characteristics into Containment Under Severe Accident Conditions,” NRC, Washington, DC, Final Report, NUREG/CR-5747.
Thompson, D. H., Farmer, M. T., Fink, J. K., Armstrong, D. R., and Spencer, B. W., 1997, “Compilation, Analysis and Interaction of ACE Phase C and MACE Experimental Data,” Argonne National Laboratory, Chicago, IL, Report ACEX TR-C-14.
Bechta, S. V., Krushinov, E. V., Vitol, S. A., Khabensky, V. B., Kotova, S. Yu., Sulatsky, A. A., Gusarov, V. V., Almyashev, V. I., Ducros, G., Journeau, C., Bottomley, D., Clément, B., Herranz, L., Guentay, S., Trambauer, K., Auvinen, A., and Bezlepkin, V. V., 2010, “Influence of Corium Oxidation on Fission Product Release From Molten Pool,” Nucl. Eng. Des., 240(5), pp. 1229–1241. 10.1016/j.nucengdes.2010.01.008
Powers, D. A., Washington, K. E., Burson, S. B., and Sprungl, J. L., 1996, “A Simplified Model of Aerosol Removal by Natural Processes in Reactor Containments,” NRC, Washington, DC, NUREG/CR-6189.
Brockmann, J. E., 1987, “Ex-Vessel Releases: Aerosol Source Terms in Reactor Accidents,” Prog. Nucl. Energy, 19(1), pp. 7–68. 10.1016/0149-1970(87)90003-5
U.S. Nuclear Regulatory Commission (U.S. NRC), 1975, “Reactor Safety Study: An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants,” NRC, Washington, DC, WASH-1400 (NUREG-75/014).
Gieseke, J. A., Cybulskis, P., Jordan, H., 1986, “Source Term Code Package: A User’s Guide,” Battelle Columbus Laboratory, Columbus, OH, NUREG/CR-4587.
Bunz, H., 1983, “NAUA4: A Code for Calculating Aerosol Behavior in LWR Core Melt Accidents, Code Description and User’s Manual,” Kernforschungszentrum Karlsruhe, Karlsruhe, Germany, KfK-353.
Summers, R. M., Cole, R. K., Boucheron, E. A., Carmel, M. K., Dingman, S. E., and Kelly, J. E., 1991, “MELCOR 1.8.0: A Computer Code for Nuclear Reactor Severe Accident Source Term and Risk Assessment Analysis,” Sandia National Laboratories, Albuquerque, NM, NUREGKR-553 1, SAND90-0364.
Frutos, R., Gido, D., Henneges, G., and Schmuck, P., 2000, “Calculation of Fission Product Behaviour in an Advanced Containment in Case of a Severe Accident,” Nucl. Eng. Des., 202(2–3), pp 173–178. 10.1016/S0029-5493(00)00356-3
Adams, R. E., Kress, T. S., and Tobias, M. L., 1981, “Sodium Oxide and Uranium Oxide Aerosol Experiments: NSPP Tests 106-108 and Tests 204–207,” Oak Ridge National Laboratory, Oak Ridge, TN, Data Record Report, NUREGKR-1767.
Tobias, M. L., and Adams, R. E., 1987, “Limestone Concrete Aerosol Experiments in Steam-Air Atmospheres: NSPP Tests 521, 522, and 531,” Oak Ridge National Laboratory, Oak Ridge, TN, Data Record Report, NUREGICR-5017, ORNLJTM-10587.
Hillard, R. K., McCormack, J. D., and Muhlestein, L. D., 1985, “Results and Code Predictions for ABCOVE Aerosol Code Validation with Low Concentration NaOH and NaI Aerosol—CSTF Test 7 AB7, HEDL-TME 85-1,” Hanford Engineering and Development Laboratory.
Kmetyk, L. N., 1993, “MELCOR 1.8.1 Assessment: MARVIKEN-V Aerosol Transport Tests ATT-26/Att-4, SAND92-2243,” Sandia National Laboratories, Albuquerque, NM.
Kanzleiter, T. K., 1987, “DEMONA Experiments Final Report,” Battelle Institute E.V., Frankfurt am Main, Germany, BIeV R65.523-01.
Rahn, F. J., 1987, “Summary of the LWR Aerosol Containment Experiments (LACE) Program Interim Report,” Electric Power Research Institute, LACE TR-012.
Von der Hardt, P., and Tattegrain, A., 1992, “The PHEBUS Fission Product Project,” J. Nucl. Mater., 188, pp. 115–130. 10.1016/0022-3115(92)90461-S
Haste, T., Giordano, P., Herranz, L., Girault, N., Dubourg, R., Sabroux, J.-C., Cantrel, L., Bottomley, D., Parozzi, F., Auvinen, A., Dickinson, S., Lamy, J.-C., Weber, G., and Albiol, T., 2009, “SARNET Integrated European Severe Accident Research: Conclusions in the Source Term Area,” Nucl. Eng. Des., 239(12), pp. 3116–3131. 10.1016/j.nucengdes.2009.09.033
Allen, M. D., Pilch, M., Griffith, R. O., and Nichols, R. T., 1991, “Experiments to Investigate the Effect of Flight Path on Direct Containment Heating (DCH) in the Surtsey Test Facility,” Sandia National Laboratories, Albuquerque, NM, NUREGKR-5728, SAND91-1105.
Allen, M. D., Pilch, M., Griffith, R. O., and Nichols, R. T., 1992, “Experiments to Investigate the Effect of Water in the Cavity on Direct Containment Heating (DCH) in the Surtsey Test Facility: The WC-1 and WC-2 Tests,” Sandia National Laboratories, Albuquerque, NM, SAND91-1173.
Allen, M. D., Pilch, M., Griffith, R. O., and Nichols, R. T., 1992, “Experiment Results of Tests to Investigate the Effect of Hole Diameter Resulting from Bottom Head Failure on Direct Containment Heating (DCH) in the Surtsey Test Facility: The WC-1 and WC-3 Tests,” Sandia National Laboratories, Albuquerque, NM, SAND91-2153.
Blanchat, T. K., Pilch, M. M., Lee, R. Y., Meyer, L., and Petit, M., 1999, “Direct Containment Heating Experiments at Low Reactor Coolant System Pressure in the Surtsey Test Facility,” Sandia National Laboratory, Albuquerque, NM, Report No. NUREG/CR-5746, SAND99-1634.
Murata, K. K., Carroll, D. E., Washington, K. E., Gelbard, F., Valdez, G. D., Williams, D. C., and Bergeron, K. D., 1989, “User’s Manual for CONTAIN 1.1: A Computer Code for Severe Nuclear Reactor Accident Containment Analysis,” Sandia National Laboratories, Albuquerque, NM, NUREGKR-5026, SAND87-2309.
Murata, K. K., Williams, D. C., Griffith, R. O., Gido, R. G., Tadios, E. L., Martinez, G.M., and Washington, K. E., 1997, “Code Manual for CONTAIN 2.0: A Computer Code for Nuclear Reactor Containment Analysis,” Sandia National Laboratories, Albuquerque, NM, NUREGKR-6533, SAND97-1735.
Meyer, L., Wilkening, H., Jacobs, H., and Paillere, H., 2005, “Overview of Containment Issues and Major Experimental Activities,” SARNET: FI6O-CT-2004-509065.
Magallon, D., Mailliat, A., and Seiler, J. M., 2005, “European Expert Network for the Reduction of Uncertainties in Severe Accident Safety Issues (EURSAFE),” Nucl. Eng. Des., 235(2–4), pp. 309–346. 10.1016/j.nucengdes.2004.08.042
Meyer, L., and Gargallo, M., 2003, “Low Pressure Corium Dispersion Experiments with Simulant Fluids in a Scaled Annular Cavity,” Nucl. Technol., 141(3), pp. 257–274.
Meyer, L., Albrecht, G., and Kirstahler, M., 2003, “Corium Dispersion and Direct Containment Heating Experiments at Low System Pressure,” Proceedings of the 10th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-10), Seoul, Korea.
Meyer, L., Albrecht, G., Kirstahler, M., Schwall, M., Wachter, E., and Wörner, G., 2004, “Melt Dispersion and Direct Containment Heating (DCH) Experiments in the DISCO-H Test Facility,” Forschungszentrum Karlsruhe, Report FZKA 6988.
Meyer, L., Albrecht, G., and Wilhelm, D., 2004, “Direct Containment Heating Investigations for European Pressurized Water Reactors,” Proceedings of the 6th International Conferenceon Nuclear Thermal Hydraulics, Operations and Safety (NUTHOS-6), Nara, Japan.
Meignen, R., Plet, C., Meyer, L., and Wilhelm, D., 2005, “Direct Containment Heating at Low Primary Pressure: Experimental Investigation and Multidimensional Modeling,” Proceedings of the NURETH-11, Avignon, France.
Allelein, H.-J., Arndt, S., Klein-Heßling, W., Schwarz, S., Spengler, C., and Weber, G., 2008, “COCOSYS: Status of Development and Validation of the German Containment Code System,” Nucl. Eng. Des., 238(4), pp. 872–889. 10.1016/j.nucengdes.2007.08.006
Meignen, R., 2005, “Status of the Qualification Program of the Multiphase Flow Code MC3D,” Proceedings of the International Congress on Advances in Nuclear Power Plants (ICAPP ‘05), Seoul, South Korea, Vol. 1, pp. 368–379.
Meignen, R., Mikasser, S., Spengler, C., and Bretault, A., 2007, “Synthesis of Analytical Activities for Direct Containment Heating,” The 2nd European Review Meeting on Severe Accident Research (ERMSAR-2007), Forschungszentrum Karlsruhe GmbH (FZK), Germany.
Henry, R. E., Paik, C. Y., and Plys, M. G., 1994, “MAAP4: Modular Accident Analysis Program for LWR Plants,” Code Manual, Vols. 1–4, Prepared by Fauske & Associates, Inc., Burr Ridge, IL, for the EPRI, Palo Alto, CA.
Theofanous, T. G., and Yuen, W. W., 1995, “The Probability of Alpha-Mode Containment Failure,” Nucl. Eng. Des., 155(1–2), pp. 459–473. 10.1016/0029-5493(94)00889-7
Basu, S., and Ginsberg, T., 1996, “A Reassessment of the Potential for an Alpha-Mode Containment Failure and a Review of the Current Understanding of Broader Fuel-Coolant Interaction Issues,” NUREG-1524.
Krieg, R., Dolensky, B., Göller, B., Hailfinger, G., Jonatzke, O., Malmberg, T., Messemer, G., Stratmanns, E., Vorberg, G., Benz, H., and Ratajczak, W., 2000, “Load Carrying Capacity of a Reactor Vessel Head Under a Corium Slug Impact From a Postulated In-Vessel Steam Explosion,” Nucl. Eng. Des., 202(2–3), pp. 179–196. 10.1016/S0029-5493(00)00357-5
Board, S. J., Hall, R. W., and Hall, R. S., 1975, “Detonation of Fuel Coolant Explosions,” Nature, 254, pp. 319–321. 10.1038/254319a0
Berthoud, G., 2000, “Vapour Explosions,” Annu. Rev. Fluid Mech., 32(1), pp. 573–611. 10.1146/annurev.fluid.32.1.573
Turland, B. D., and Dobson, G. P., 1996, “Molten Fuel Coolant Interactions: A State of-the-Art Report,” European Commission, EUR 16874 EN.
Almstroem, H., Sundel, T., Frid, W., and Engelbrektson, A., 1999, “Significance of Fluid-Structure Interaction Phenomena for Containment Response to Ex-Vessel Steam Explosions,” Nucl. Eng. Des., 189(1–3), pp. 405–422. 10.1016/S0029-5493(98)00272-6
Leskovar, M., and Mavko, B., 2000, “The Influence of the Accuracy of the Numerical Methods on Steam-Explosion Premixing Phase Simulation Results,” J. Mech. Eng., 46(9), pp. 607–621.
Cizelj, L., Končar, B., and Leskovar, M., 2006, “Vulnerability of a Partially Flooded PWR Reactor Cavity to a Steam Explosion,” Nucl. Eng. Des., 236(14–16), pp. 1617–1627. 10.1016/j.nucengdes.2006.04.018
Huhtiniemi, I., and Magallon, D., 1999, “Insight Into Steam Explosions With Corium Melts in KROTOS,” Proceedings of the Nuclear Reactor Thermal Hydraulics-9 Meeting, San Francisco, CA.
Song, J. H., Park, I. K., Shin, Y. S., Kim, J. H., Min, B. T., Hong, S. W., and Kim, H. D., 2003, “Fuel Coolant Interaction Experiments in TROI Using a UO 2 / ZrO 2 Mixture,” Nucl. Eng. Des., 222(1), pp. 1–15. 10.1016/S0029-5493(02)00388-6
Magallon, D., Huhtiniemi, I., and Hohmann, H., 1999, “Lessons Learnt From FARO/TERMOS Corium Melt Quenching Experiments,” Nucl. Eng. Des., 189(1–3), pp. 223–238. 10.1016/S0029-5493(98)00274-X
Song, J. H., Kim, J. H., Hong, S. W., Min, B. T., and Kim, H. D., 2006, “The Effect of Corium Composition and Interaction Vessel Geometry on the Prototypic Steam Explosion,” Ann. Nucl. Energy, 33(17–18), pp. 1437–1451. 10.1016/j.anucene.2006.09.005
Annunziato, A., and Addabbo, C., 1994, “COMETA, a Computer Code for Melt Quenching and Analysis,” Proceedings of the International Conference on New Trends in Nuclear Systems Thermalhydraulics, Pisa, Italy.
Corradini M. L., Kim, B. J., and Oh, M. D., 1988, “Vapour Explosion in Light Water Reactors: A Theory and Modelling,” Prog. Nucl. Energy, 22(1), pp. 1–117. 10.1016/0149-1970(88)90004-2
Berthoud, G., and Brayer, C., 1997, “First Vapour Explosion Calculations Performed With MC3D Code,” Proceedings of the CSNI Specialists Meeting on FCIs, Tokai, Japan.
Young, M. F., Reed, A. W., and Schmidt, R. C., 1999, “IFCI 7.0 Models and Correlations,” SAND99-1000.
Meignen, R., Bank, K.-H., Berthoud, G., Bang, K.-H., Berthoud, G., Basu, S., Buerger, M., Buck, M., Corradini, M. L., Jacobs, H., Melikhov, O., Naitoh, M., Moriyama, K., Sairanen, R., Song, J. H., Suh, N., and Theofanous, T. G., 2005, “Comparative Review of FCI Computer Models Used in the OECD-SERENA Program,” Proceedings of ICAPP ‘05, Seoul, Korea.
Lee, J. H. S., and Berman, M., 1997, “Hydrogen Combustion and Its Application to Nuclear Reactor Safety,” Adv. Heat Transfer, 29, pp. 59–127. 10.1016/S0065-2717(08)70184-9
Nuclear Emergency Response Headquarters (NERH), 2011, “Report of Japanese Government to IAEA Ministerial Conference on Nuclear Safety—Accident at TEPCO’s Fukushima Nuclear Power Stations.”
Klein, R., Breitung, W., Coe, I., Grönig, H., He, L., Olivier, H., Rehm, W., Studer, E. and Vendel, J., 1998, “Models and Criteria for Prediction of Deflagration-to-Detonation Transition (DDT) in Hydrogen-Air-Steam Systems Under Severe Accident Conditions,” Fission Safety (FISA 98), European Commission.
Breitung, W., and Dorofeev, S. B., 1999, “Criteria for Deflagration-to-Detonation Transition (DDT) in Nuclear Containment Analysis,” Proceedings of the 15th International Conference on Structural Mechanics in Reactor Technology, Post-Conference Seminar on Containment of Nuclear Reactors, Seoul, Korea.
Travis, J. R., Royl, P., Redlinger, R., Necker, G., Spore, J. W., Lam, L. L., Wilson, T. L., Nichols, B. D., and Müller, C., 1998, “GASFLOW-II: A Three-Dimensional Finite-Volume Fluid-Dynamics Code for Calculating the Transport, Mixing, and Combustion of Flammable Gases and Aerosols in Geometrically Complex Domains, Theory and Computational Model,” Vol. 1, Reports FZKA-5994, LA-13357-MS.
Lee, J. J., Lee, J.-Y., and Park, G.-C., 2005, “GOTHIC-3D Applicability to Hydrogen Combustion Analysis,” Nucl. Eng. Technol., 37(3), pp. 265–272.
Baraldi, D., Heitsch, M., and Wilkening, H., 2007, “CFD Simulations of Hydrogen Combustion in a Simplified EPR Containment With CFX and REACFLOW,” Nucl. Eng. Des., 237(15–17), pp. 1668–1678. 10.1016/j.nucengdes.2007.02.026
Kolev, N. I., 1995, “External Cooling of VVER 640 Reactor Vessel Under Severe Accident Conditions, Part 1. Buoyancy Driven Convection, Metallic Layer Dynamics,” Schmelzfänger, KWU NA-M/95/E029, Project WWER-640.
Theofanous, T. G., Syri, S., Salmassi, T., Kymäläinen, O., and Tuomisto, H., 1994, “Critical Heat Flux Through Curved, Downwards Facing Thick Wall,” Proceedings of the OECD/CSNI/NEA Workshop on Large Molten Pool Heat Transfer, Grenoble, France.
Theofanous, T. G., Liu, C., Angelini, S., Kymäläinen, O., Tuomisto, H., and Additon, S., 1994, “Experience From the First Two Integrated Approaches to In-Vessel Retention External Cooling,” Proceedings of the OECD/CSNI/NEA Workshop on Large Molten Pool Hear Transfer, Grenoble, France.
Asfia, F. J., and Dhir, V. K, 1996, “An Experimental Study of Natural Convection in a Volumetrically Heated Spherical Pool Bounded on Top With a Rigid Wall,” Nucl. Eng. Des., 163(3), pp. 333–348. 10.1016/0029-5493(96)01215-0
Chu, T. Y., Bentz, J. H., and Simpson, R. B., 1995, “Observation of the Boiling Process from a Large Downward-Facing Torispherical Surface,” Proceedings of the 30th National Heat Transfer Conference, Portland, OR.
Chu, T. Y., Bainbridge, B. L., Simpson, R. B., and Bentz, J. H., 1997, “Ex-Vessel Boiling Experiments: Laboratory and Reactor-Scale Testing of the Flooded Cavity Concept for In-Vessel Core Retention Part I: Observation of Quenching of Downward-Facing Surfaces,” Nucl. Eng. Des., 169(1–3), pp. 77–88. 10.1016/S0029-5493(96)01278-2
Rempe, J. L., Knudson, D. L., Allison, C. M., Thinnes, G. L., and Atwood, C. L., 1997, “Potential for AP600 In-Vessel Retention Through Ex-Vessel Flooding,” Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID, Technical Evolution Report, INEEL/EXT-97-00779.
Rempe, J. L., Suh, K. Y., Cheung, F. B., and Kim, S. B., 2008, “In-Vessel Retention Strategy for High Power Reactors,” Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID, Technical Report, INEEEL/EXT-04-025621.
Loktinonov, V. D., Mukhtarov, E. S., Yaroshenko, N. I., and Orlov, V. E., 1999, “Numerical Investigation of the Reactor Pressure Vessel Behavior Under Severe Accident Conditions Taking Into Account the Combined Processes of the Vessel Creep and the Molten Pool Natural Convection,” Nucl. Eng. Des., 191(1), pp. 31–52. 10.1016/S0029-5493(99)00051-5
Esmaili, H., and Khatib-Rahbar, M., 2004, “Analysis of In-Vessel Retention and Ex-Vessel Fuel Coolant Interaction for AP1000,” Energy Research, Inc., ERI/NRC 04-21, NUREG/CR-6849.
Dinh, T. N., Tu, J. P., and Theofanous, T. G., 2004, “Two-Phase Natural Circulation Flow in AP1000, In-Vessel Retention-Related ULPU-V Facility Experiments,” Proceedings of the 2004 International Congress on Advances in Nuclear Power Plants, ICAPP’04, Pittsburgh, PA, pp. 928–938.
Henry, R. L., and Fauske, H., 1993, “External Cooling of a Reactor Vessel Under Severe Accident Conditions,” Nucl. Eng. Des., 139(1), pp. 31–43. 10.1016/0029-5493(93)90260-G
Rouge, S., 1997, “SULTAN Test Facility for Large-Scale Vessel Coolability in Natural Convection at Low Pressure,” Nucl. Eng. Des., 169(1–3), pp. 185–195. 10.1016/S0029-5493(96)01277-0
Cheung, F. B., Haddad, K. H., and Liu, Y. C., 1997, “Critical Heat Flux (CHF) Phenomenon on a Downward Facing Curved Surface,” NUREG/CR-6507, PSU/ME-97-7321.
Theofanous, T. G., Oh, S. J., and Scobel, J. H., 2004, “In-Vessel Retention Technology Development and Use for Advanced PWR Design in the USA and Korea,” Technical Report, FG07-02RL14337.
Knudson, D. L., and Rempe, J. L., 2002, “In-Vessel Retention Modeling Capabilities of SCDAP/RELAP5-3D,” Proceedings of ICONE10-22754, Arlington, VA.
Khatib-Rahbar, M., Esmaili, H., Vijaykumar, R., and Wagage, H., 1996, “An Assessment of Ex-Vessel Steam Explosions in the AP600 Advanced Pressurized Water Reactor,” Energy Research, Inc., ERI/NRC 95–211.
Dizon, M. B., Yang, J., Cheung, F. B., Rempe, J. L., Suh, K. H., and Kim, S. B., 2003, “Effects of Surface Coating on Nucleate Boiling Heat Transfer on a Downward Facing Surface,” Proceedings of the 2003 ASME Summer Heat Transfer Conference, Paper HT2003-47209.
Dizon, M. B., Yang, J., and Cheung, F. B., 2004, “Effects of Surface Coating on the Critical Heat Flux for Pool Boiling From a Downward Facing Surface,” J. Enhanced Heat Transfer, 11(2), pp. 133–150. 10.1615/JEnhHeatTransf.v11.i2
Dinh, T. N., Tu, J. P., Salmassi, T., and Theofanous, T. G., 2003, “Limits of Coolability in the AP1000-Related ULPU-2400 Configuration V Facility,” 10th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, NURETH10, Oct. 5–11, Seoul, Korea, Paper G00407.
Cheung, F. B., Yang, J., and Dizon, M. B., 2003, “On the Enhancement of External Reactor Vessel Cooling of High-Power Reactors,” 10th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, NURETH10, Oct. 5–11, Seoul, Korea, Paper G00403.
Yang, J., Dizon, M. B., Cheung, F. B., Rempe, J. L., Suh, K. Y., and Kim, S. B., 2004, “CHF Enhancement by Vessel Coating for External Reactor Vessel Cooling,” Proceedings of ICAPP’04, Pittsburgh, PA.
Yang, J., Cheung, F. B., Rempe, J. L., Suh, K. Y., and Kim, S. B., 2005, “Critical Heat Flux for Downward-Facing Boiling on a Coated Hemispherical Vessel Surrounded by an Insulation Structure,” Proceedings of ICAPP’05, Seoul Korea.
Yang, J., Cheung, F. B., Rempe, J. L., Suh, K. Y., and Kim, S. B., 2005, “Correlations of Nucleate Boiling Heat Transfer and Critical Heat Flux for External Reactor Vessel Cooling,” Proceedings of the HT2005 ASME Summer Heat Transfer Conference, San Francisco, CA.
Buongiorno, J., Hu, L. W., Apostolakis, G., Hannink, R., Lucas, T., and Chupin, A., 2009, “A Feasibility Assessment of the Use of Nanofluids to Enhance the In-Vessel Retention Capability in Light-Water Reactors,” Nucl. Eng. Des., 239(5), pp. 941–948. 10.1016/j.nucengdes.2008.06.017
Hwang, I. S., Suh, K. Y., 2001, “Gap Structure for Nuclear Reactor Vessel,” United States Patent US 6195405 B1.
Rempe, J. L., Knudson, D. L., Condie, K. G., Suh, K. Y., Cheung, F.-B., and Kim, S.-B., 2004, “Conceptual Design of an In-Vessel Core Catcher,” Nucl. Eng. Des., 230(1–3), pp. 311–325. 10.1016/j.nucengdes.2003.11.030
Kang, K. H., Park, R. J., Ryu, W. S., Kim, S. B., Suh, K. Y., and Cheung, F. B., 2004, “Thermal and Metallurgical Response of the In-Vessel Core Catcher According to the Gap Size With the Lower Head Vessel,” Proceedings of the International Congress on Advances in Nuclear Power Plants (ICAPP ‘04), Pittsburgh, PA.
Karbojian, A., Ma, W. M., Kudinov, P., and Dinh, T. N., 2009, “A Scoping Study of Debris Bed Formation in the DEFOR Test Facility,” Nucl. Eng. Des., 239(9), pp. 1653–1659. 10.1016/j.nucengdes.2009.03.002
Ma, W. M., Li, L. X., and Karbojian, A., 2010, “An Experimental Study on Coolability of Volumetrically Heated Particulate Beds of Prototypical Characteristics,” Proceedings of the 8th International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-8), Shanghai, China.
Kudinov, P., Karbojian, A., Tran, C.-T., and Villanueva, W., 2010, “The DEFOR-A Experiment on Fraction of Agglomerated Debris as a Function of Water Pool Depth,” Proceedings of the 8th International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-8), Shanghai, China, N8P0296.
Lindholm, I., Holmström, S., Miettinen, J., Lestinen, V., Hyvärinen, J., Pankakoski, P., and Sjövall, H., 2006, “Dryout Heat Flux Experiments With Deep Heterogeneous Particle Bed,” Nucl. Eng. Des., 236(19–21), pp. 2060–2074. 10.1016/j.nucengdes.2006.03.036
Schäfer, P., Groll, M., and Kulenovic, R., 2006, “Basic Investigations on Debris Cooling,” Nucl. Eng. Des., 236(19–21), pp. 2104–2116. 10.1016/j.nucengdes.2006.03.033
Rashid, M., Kulenovic, R., and Laurien, E., 2010, “Experimental Results on the Coolability of a Debris Bed With Down Comer Configurations,” Proceedings of the 8th International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-8), Shanghai, China, N8P0296.
Ma, W. M., and Dinh, T. N., 2010, “The Effects of Debris Bed’s Prototypical Characteristics on Corium Coolability in a LWR Severe Accident,” Nucl. Eng. Des., 240(3), pp. 598–608. 10.1016/j.nucengdes.2009.10.026
Bürger, M., 2007, “Core and Debris Coolability During Reflooding,” 3rd Annual Review Meeting of SARNET, Garching, Germany.
Schulz, T. L., 2006, “Westinghouse AP1000 Advanced Passive Plant,” Nucl. Eng Des., 236(14–16), pp. 1547–1557. 10.1016/j.nucengdes.2006.03.049
Bittermann, D., Krugmann, U., and Azarian, G., 2001, “EPR Accident Scenarios and Provisions,” Nucl. Eng. Des., 207(1), pp. 49–57. 10.1016/S0029-5493(00)00425-8
Trambauer, K., Bals, C., Schubert, J. D., and Austregesilo, H., 2003, “ATHLET-CD Mod 1.1—Cycle K User’s Manual,” Gesellschaft für Anlagen- und Reaktorsicherheit (GRS), GRS-P-2/Vol. 1.
Allison, C. M., Berna, G. A., Dobbe, C. A., and Knudson, D. L., 1997, “SCDAP/RELAP5/MOD3.2 Code Manual,” Vol.4, NUREG/CR-6150, INEL 96/0422.
Schatz, A., and Hocke, K. D., 1995, “KESS—A Modular Program System to Simulate and Analyze Core Melt Accidents in Light Water Reactors,” Nucl. Eng. Des., 157(1–2), pp. 269–280. 10.1016/0029-5493(95)00997-Q
Fichot, F., Chatelard, P., Barrachin, M., Guillard, V., Melis, S., and Zabiego, M., 2001, “ICARE/CATHARE, a Computer Code for Analysis of Severe Accidents in LWRs: Description of Physical Models,” Note Technique IPSN/DRS/SEMAR, SEMAR 00/03.
Studer, E., and Galon, P., 1997, “Hydrogen Combustion Loads—Plexus Calculations,” Nucl. Eng. Des., 174(2), pp. 119–134. 10.1016/S0029-5493(97)00121-0
Albiol, T., Van Dorsselaere, J. P., Chaumont, B., Christophe, H., Leonhard Meyer, J., Sehgal, B. R., Schwinges, B., Beraha, D., Annunziato, A., and Zeyen, R., 2010, “SARNET: Severe Accident Research Network of Excellence,” Prog. Nucl. Energy, 52(1), pp. 2–10. 10.1016/j.pnucene.2009.07.011
Stickler, L. A., Rempe, J. L., Chavez, S. A., Thinnes, G. L., Snow, S. D., Witt, R. J., Corradini, M. L., Kos, J. A., 1994, “Calculations to Estimate the Margin to Failure in the TMI-2 Vessel,” Idaho National Engineering Laboratory, EG&G Idaho, Inc., Idaho Falls, ID, NUREG/CR-6196, TMI V(93)EG01.
Maruyama, Y., Moriyama, K., Park, H. S., Yang, Y., and Sugimoto, J., 1999, “Analysis of Debris Coolability Experiment in ALPHA Program with CAMP Code,” 9th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, CA.
Kim, J. H., Kang, K. H., Park, R. J., Kim, S. B., and Kim, H. D., 1999, “Experimental Study on Inherent In-vessel Cooling Mechanism during Severe Accident,” Proceedings of the 7th International Conference on Nuclear Engineering (ICONE7), Tokyo, Japan.
Asmolov, V., Ponomarev-Stepnoy, N. N., Strizhov, V., and Sehgal, B. R., 2001, “Challenges Left in the Area of In-Vessel Melt Retention,” Nucl. Eng. Des., 209(1–3), pp. 87–96. 10.1016/S0029-5493(01)00391-0
Bechta, S. V., Krushinov, E. V., Almjashev, V. I., Vitol, S. A., Mezentseva, L. P., Petrov, Yu. B., Lopukh, D. B., Khabensky, V. B., Barrachin, M., Hellmann, S., Froment, K., Fischer, M., Tromm, W., Bottomley, D., Defoort, F., and Gusarov, V. V., 2006, “Phase Diagram of the ZrO 2 -FeO System,” J. Nucl. Mater., 348(1–2), pp. 114–121. 10.1016/j.jnucmat.2005.09.009
Bechta, S. V., Khabensky, V. B., Granovsky, V. S., Krushinov, E. V., Vitol, S. A., Gusarov, V. V., Almjashev, V. I., Lopukh, D. B., Tromm, W., Bottomley, D., Fischer, M., Piluso, P., Miassoedov, A., Altstadt, E., Willschufz, H. G., and Fichot, F., 2006, “Experimental Study of Interactions Between Suboxidized Corium and Reactor Vessel Steel,” Proceedings of ICAPP’06, June, Reno, NV, Paper No. 6054.
Asmolov, V. G., Tsurikov, D. F., and Bechta, S., 2007, “Molten Corium Stratification and Component Partitioning,” Proceedings of MASCA Seminar 2007, Cadarache, France.
Seiler, J. M., Tourniaire, B., Defoort, F., and Froment, K., 2007, “Consequences of Material Effects on In-Vessel Retention,” Nucl. Eng. Des., 237(15–17), pp. 1752–1758. 10.1016/j.nucengdes.2007.03.007
Chevalier, P. Y., Fischer, E., and Cheynet, B., 2004, “Progress in the Thermodynamic Modelling of the O-U-Zr Ternary System,” Comput. Coupling Phase Diagrams Thermo-chemistry, 28, pp. 15–40. 10.1016/j.calphad.2004.03.005

Figures

Grahic Jump Location
Fig. 1

Schematic diagram of IVR based on AP1000

Grahic Jump Location
Fig. 2

Schematic of the two-layer configuration

Grahic Jump Location
Fig. 3

Schematic of the three-layer configuration

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In