0
Research Papers

Theoretical Investigations on Laser-Assisted Depletion of Gd152 Isotope From Natural Gadolinium

[+] Author and Article Information
M. Sankari

Accelerator and Pulse Power Division,
Bhabha Atomic Research Centre,
Visakhapatnam 530 012, India

M. V. Suryanarayana

Accelerator and Pulse Power Division,
Bhabha Atomic Research Centre,
Visakhapatnam 530 012, India
e-mail: suryabarcv@gmail.com

1Corresponding author.

Manuscript received January 6, 2015; final manuscript received April 15, 2015; published online September 3, 2015. Assoc. Editor: Michal Kostal.

ASME J of Nuclear Rad Sci 1(4), 041017 (Sep 03, 2015) (10 pages) Paper No: NERS-15-1002; doi: 10.1115/1.4030504 History: Received January 06, 2015; Accepted April 30, 2015; Online September 16, 2015

We have proposed laser-assisted depletion of Gd152 isotope from a natural isotopic mixture of Gd to enhance its functional efficiency as a burnable poison. Theoretical investigations on laser-assisted depletion of Gd152 isotope from natural gadolinium have been carried out for two-color resonant three-color photoionization pathways using density matrix formalism. Calculations have been carried out using a density matrix formalism to optimize conditions for high ionization efficiency without much sacrifice in the isotopic selectivity. Optimum conditions for good isotopic selectivity of Gd152 without significant sacrifice in the ion yield have been identified. Under appropriate conditions, all the 17 photoionization schemes are found to be useful for the laser-assisted separation of Gd152 isotopes which can be used for reactor applications. The effect of source, laser, and atom parameters on isotopic selectivity and ionization efficiency has been investigated. Among the photoionization schemes investigated, one of the photoionization scheme has been investigated in detail. Under optimized conditions, this photoionization scheme has resulted in high ionization efficiency (>50%) and high isotopic selectivity (1.2×104).

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

IAEA Technical Reports, 1989, “Review of Fuel Developments for Water Cooled Nuclear Power Reactors,” , Vienna.
Renier, J.-P. A., and Grossbeck, M. L., 2001, “Development of Improved Burnable Poisons for Commercial Nuclear Power Reactors,”
Kloosterman, J. L., 2003, “Application of Boron and Gadolinium Burnable Poison Particles in UO2 and PuO2 Fuels in HTRs,” Ann. Nucl. Energy, 30, pp. 1807–1819. 10.1016/S0306-4549(03)00134-8
Santala, M. I. K., Daavittila, A. S., Lauranto, H. M., and Salomaa, R. R. E., 1997, “Odd—Isotope Enrichment Studies of Gd by Double Resonance Laser—Ionization for the Production of Burnable Nuclear Reactor Poison,” Appl. Phys., 64B(3), p. 339–347. 10.1007/s003400050182
Sankari, M., Suryanarayana, M. V., and Gangadharan, S., 1999, “Isotope Selective Excitation of Gd 155 and Gd 157 Isotopes From D 2 − 6 0 9 States Using Broadband Lasers,” J Nucl. Mater., 264, pp. 122–132, PII:S0022-3115(98)00480-2. 10.1016/S0022-3115(98)00480-2
Kiran Kumar, P.V., Suryanarayana, M.V., and Gangadharan, S., 2000, “Selective Excitation of Odd Gadolinium Isotopes Using Two-Colour Photoionisation Schemes,” J. Nucl. Mater., 282(2–3), pp. 255–260. 10.1016/S0022-3115(00)00406-2
Le Guyadec, E., Ravoire, J., Botter, R., Lambert, F., and Petit, A., 1990, “Effect of a Magnetic Field on the Resonant Multistep Selective Photoionization of Gadolinium Isotopes,” Opt. Commum., 76, pp. 34–41 10.1016/0030-4018(90)90552-5
Meggers, W. F., Corliss, C. H., and Scribner, B. F., 1975, “Tables of Spectral—Line Intensities, Part I—Arranged by Elements,” NBS Monograph, Vol. 145, U.S. GPO, Washington, DC.
Martin, W. C., Zalubas, R., and Hagan, L., 1978, Atomic Energy Levels—The Rare Earth Elements (Natl. Stand. Ref. Data. Ser.), Natl. Bur. Stand. (US), Wasinghton, DC, Circ. No. 60, U.S. GPO.
Klinkenberg, P. F. A., 1946, “Weak Field Zeeman Effect Observations in the Spectra of Th II, Nd I and Gd I. Structure of the Gd I Spectrum: Isotope Shift of its Lines,” Physica, 12 pp. 33–48. 10.1016/S0031-8914(46)80110-1
Brix, P., 1952, “Nuclear Moments Eu 151 , 153 , Yb 174 , 176 , Gd 156 , 158 , 160 : Measured Isotope Shifts, HFS,” Z. Physik., 132 (5), pp. 579–607. 10.1007/BF01333219
Lindenberger, K. H., 1955, “Magnetisches Kerndipolmoment und Kerndrehimpulsquantenzahl des 69Tm169,” Z. Physik., 141(4), pp. 476–485. 10.1007/BF01331891
Murakawa, K., 1954, “Hyperfine Structure of the Spectra of Nd and Gd,” Phys. Rev., 96(6), pp. 1543–1546. 10.1103/PhysRev.96.1543
Kopfermann, H., Kruger, L., and Steudel, A., 1956, “Uber die Isotopieverscheiebung im Spektrum des Gadolinium,” Die Naturwissenschaften, 43(8), pp 175–176. 10.1007/BF00603700
Corliss, C. H., and Bozman, W. R., 1962, “Experimental Transition Probabilities for Spectral Lines of Seventy Elements,” NBS Monograph 53.
Komarovski, V. A., Smirnov, and Yu, M. 1992, “Experimental Study of the Transition Probabilities of the Gadolinium Atom,” Opt. Spectrosc., 73, p. 507
Nishimura, A., Ohba, H., Ogura, K., and Shibata, T, 1994, “Measurement of the Absolute Oscillator Strengths of Gadolinium Using an Atomic Vapour Produced by Electron Beam Heating,” Opt. Commun., 110(5–6), pp. 561–564. 10.1016/0030-4018(94)90250-X
Blagoev, K. B., and Komarovski, V. A., 1994, “Lifetimes of Levels of Neutral and Singly Ionized Lanthanide Atoms,” At. Data Nucl. Data Table, 56, pp. 1–40. 10.1006/adnd.1994.1001
Ahmad, S. A., Saksena, G. D., and Venugopalan, A., 1976, “Isotope Shift Studies in Gadolinium Spectra,” Physica, C 81(2), pp. 366–375. 10.1016/0378-4363(76)90074-7
Ahmad, S. A., Venugopalan, A., and Saksena, G. D., 1979, “Isotope Shits in Odd and Even Energy Levels of the Neutral and Singly Ionised Gadolinium Atom,” Spectrochim. Acta B, 34(5), pp. 221–235. 10.1016/0584-8547(79)80010-5
Ahmad, S. A., Venugopalan, A., and Saksena, G. D., 1982, “Isotope Shifts and Electronic Configurations of Some of the Energy Levels of the Neutral Gadolinium Atom,” Spectrochim Acta 37(8), pp. 637–645. 10.1016/0584-8547(82)80076-1
Afzal, S. M., Venugopalan, A., and Ahmad, S. A., 1997, “Isotope Shift Studies in the Spectra of Gadolinium in UV Region and Term Shifts of High Even Levels of Gd I,” Z. Phys. D, 41(2), pp. 95–100. 10.1007/s004600050295
Niki, H., Miyamato, T., Izawa, Y., and Nakai, S., 1989, “Hyperfine Structure and Isotope Shift Measurements on Gadolinium Levels by Laser Induced Fluorescence Spectroscopy,” Opt. Commun., 70, pp. 16–20. 10.1016/0030-4018(89)90200-9
Jia, L., Jing, C., Zhou, Z., and Lin, F., 1993, “Hyperfine Structure and Isotope Shifts of High-Lying Odd-Parity Levels of Gd I by Resonantly Enhanced Doppler-Free Two-Photon Spectroscopy,” JOSAB, 10(12), pp. 2269–2272. 10.1364/JOSAB.10.002269
Blaum, K., Bushaw, B. A., Diel, S., Geppert, Ch., Kuschnick, A., Muller, P., Nortershauser, W., Schmitt, A., and Wendt, K., 2000, “Isotope Shifts and Hyperfine Structure in the [Xe] 4 f 7 5d 6 s 2 D J 9 → [ Xe ] 4 f 7   5 d   6 s   6 p   F J + 1 9 Transitions of Gadolinium,” Eur. Phys. J., D 11, pp. 37–44.
Jin, W.G., Ono, H., and Minowa, T., 2011, “Hyperfine Structure and Isotope Shift in High Lying Levels of Gd I,” J Phys. Soc. Jpn., 80, Article ID 124301, p. 4.
King, W. H., 1984, Isotope Shift in Atomic Spectra, Plenum Press, New York.
Seltzer, E. C., 1969, “K X-Ray Isotope Shifts,” Phys. Rev., 188, pp. 1916–1919.
Borisov, S. K., Gangrskii, Yu. P., Hradecny, C., Zemlyanoi, S. G., Krynetskii, B. B., Marinova, K. P., Markov, B. N., Mishin, V. A., Oganesyan, Yu. Ts., Stelmakh, O. M., HueHoang Thi Kim, and TamTran Cong, 1987, “Measurement of Mean-Square Nuclear Radii of Nd, Sm, and Gd by Laser Excited Fluorescence,” Sov. Phys. JETP 66 (5) pp. 882–889.
Angeli, I., and Marinova, K. P., 2013, “Table of Experimental Nuclear Ground State Charge Radii: An Update,” At. Nucl. Data Tables, 99(1), pp. 69–95. 10.1016/j.adt.2011.12.006
Wakasugi, M., Horiguchi, T., Jin, W. G., Sakata, H., and Yoshizawa, Y., 1990, “Changes of the Nuclear Charge Distribution of Nd, Sm, Gd and Dy From Optical Isotope Shifts,” J. Phys. Soc. Jpn., 59(8), 2700–2713. 10.1143/JPSJ.59.2700
Fricke, G., Bernhardt, C., Heilig, K., Schaller, L. A., Schellenberg, L., Shera, E. B., and De Jager, C. W., 1995, “Nuclear Ground State Charge Radii From Electromagnetic Interactions,” At. Data Nucl. Data Tables, 60(2), pp. 177–285. 10.1006/adnd.1995.1007
Kronfeldt, H.-D., Klemz, G., and Weber, D.-J., 1988, “J-Dependence of the Isotope Shift in Gd I 4f7 5d6s2 (a 9D),” Z. Phys., D 10(1), pp. 103–104. 10.1007/BF01425586
Sankari, M., Kiran Kumar, P. V., and Suryanarayana, M. V., 2006, “Optimization of the Conditions for Simultaneous Non-Selective Excitation of Plutonium Isotopes for Isotope Ratio Measurements in Resonance Ionization Mass Spectrometry,” Int. J. Mass Spectrom., 254(1–2), pp. 94–100. 10.1016/j.ijms.2006.05.019
Sankari, M., 2012, “Broadband Non-Selective Excitation of Plutonium Isotopes for Isotope Ratio Measurements in Resonance Ionization Mass Spectrometry: A Theoretical Study,” Rapid Commun. Mass Spectrom., 26(19), pp. 2231–2240 10.1002/rcm.6342 [PubMed]
Nortershauser, W., Bushaw, B. A., and Blaum, K., 2000, “Double Resonance Measurements of Isotope Shifts and Hyperfine Structure in Gd I With Hyperfine-State Selection in an Intermediate Level,” Phys Rev A, 62(2), p. 022506. 10.1103/PhysRevA.62.022506
Nortershauser, W., Bushaw, B. A., Muller, P., and Wendt, K., 2000, “Line Shapes in Triple Resonance Ionization Spectroscopy,” Appl. Opt., 39(30), pp. 5590–5600. 10.1364/AO.39.005590 [PubMed]
Bushaw, B. A., 1997, Doctoral thesis, Johannes Guttenberg Universitat Mainz geboren in Princeton.
Kusch, P., and Hughes, V. W., 1959, Atomic and Molecular Beam Spectroscopy (Handbuch der Physik, Vol. 7, 37, Part 1) S. Flugge, ed., Springer - Verlag, Berlin, pp. 1–172.

Figures

Grahic Jump Location
Fig. 1

Distribution of the level populations of Gd metastable states at various temperatures

Grahic Jump Location
Fig. 2

King’s plot of the 9D40(532.977  cm−1)→9D4(17930.516  cm−1) (574.794  nm) transition in Gd

Grahic Jump Location
Fig. 3

Mass number of gadolinium isotopes versus difference in mean-square nuclear charge distribution with reference to Gd160 isotope

Grahic Jump Location
Fig. 4

Generalized two-step photoionization scheme

Grahic Jump Location
Fig. 5

Doppler-free two-dimensional lineshape of Gd152 isotope for Scheme-7. The power densities of the first, second, and third excitation laser(s) are set to 100  W/cm2. Resonance position of Gd157 (center of gravity) is also shown

Grahic Jump Location
Fig. 6

Two-dimensional contour plot of lineshape for Scheme-7. The power densities of the first, second, and third excitation laser(s) are set to 14,000, 19,000, and 55,000  W/cm2, respectively. Resonance position of Gd157 (center of gravity) is also shown

Grahic Jump Location
Fig. 7

Normalized flux distribution and Doppler-shifted two-photon detuning plotted against atom velocity

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In