Research Papers

Oxidation Parameters of Oxide Dispersion-Strengthened Steels in Supercritical Water

[+] Author and Article Information
Sami Penttilä

VTT Technical Research Centre of Finland Ltd.,
P.O. Box 1000, FI-02044 VTT Espoo, Finland
e-mail: sami.penttila@vtt.fi

Iva Betova

Department of Chemistry,
Technical University of Sofia,
Kl. Ohridski Blvd. 8, 1000 Sofia, Bulgaria
e-mail: iva_betova@tu-sofia.bg

Martin Bojinov

Department of Physical Chemistry,
University of Chemical Technology and Metallurgy,
Kl. Ohridski Blvd. 8, 1756 Sofia, Bulgaria
e-mail: martin@uctm.edu

Petri Kinnunen

VTT Technical Research Centre of Finland Ltd.,
P.O. Box 1000, FI-02044 VTT Espoo, Finland
e-mail: petri.kinnunen@vtt.fi

Aki Toivonen

VTT Technical Research Centre of Finland Ltd.,
P.O. Box 1000, FI-02044 VTT Espoo, Finland
e-mail aki.toivonen@vtt.fi

1Corresponding author.

Manuscript received May 28, 2015; final manuscript received July 16, 2015; published online December 9. Assoc. Editor: Thomas Schulenberg.

ASME J of Nuclear Rad Sci 2(1), 011017 (Dec 09, 2015) (8 pages) Paper No: NERS-15-1099; doi: 10.1115/1.4031127 History: Received May 28, 2015; Accepted July 23, 2015

The kinetic parameters of oxidation of two oxide dispersion strengthened (ODS) alloys, PM2000 and MA956, in supercritical water (SCW) are evaluated using an updated model that assumes that the growth of the outer layer is governed by the transport of interstitial cations through the inner layer. The model is able to reproduce quantitatively the depth profiles of individual constituent elements in the inner and outer layers, as well as in the diffusion/transition layer of the alloy between the inner layer and the bulk substrate. The rate constants and diffusion coefficients decrease with time, indicating oxide layer restructuring.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Allen, T. R., Chen, Y., Ren, X., Sridharan, K., Tan, L., Was, G. S., West, E., and Guzonas, D., 2012, Material Performance in Supercritical Water (Comprehensive Nuclear Materials, Vol. 5), T. R. Allen, R. E. Stoller, and S. Yamanaka, eds., Elsevier, Amsterdam, pp. 280–326. 978-0-08-056033-5
Was, G. S., Ampornrat, P., Gupta, G., Teysseyre, S., West, E. A., Allen, T. R., Sridharan, K., Tan, L., Chen, Y., Ren, X., and Pister, C., 2007, “Corrosion and Stress Corrosion Cracking in Supercritical Water,” J. Nucl. Materials, 371(1–3), pp. 176–201. 0022-3115 10.1016/j.jnucmat.2007.05.017
Tan, L., Allen, T. R., and Yang, Y., 2011, “Corrosion Behavior of Alloy 800H (Fe─Cr21─Ni32) in Supercritical Water,” Corros. Sci., 53(2), pp. 703–711. 0010-938X 10.1016/j.corsci.2010.10.021
Tan, L., Ren, X., Sridharan, K., and Allen, T. R., 2008, “Corrosion Behavior of Ni-Base Alloys for Advanced High Temperature Water-Cooled Nuclear Plants,” Corros. Sci., 50(11), pp. 3056–3062. 0010-938X 10.1016/j.corsci.2008.08.024
Yesodharan, S., 2002, “Supercritical Water Oxidation: An Environmentally Safe Method for the Disposal of Organic Wastes,” Curr. Sci., 82(9), pp. 1112–1122. 0011-3891
Technology Roadmap Update for Generation IV Nuclear Energy Systems, 2014, Issued by the OECD Nuclear Energy Agency for the Generation IV International Forum, https://www.gen-4.org.
Ukai, S., Harada, M., Okada, H., Inoue, M., Nomura, S., Shikakura, S., Asabe, K., Nishida, T., and Fujiwara, M., 1993, “Alloying Design of Oxide Dispersion Strengthened Ferritic Steel for Long Life FBRs Core Materials,” J. Nucl. Mater., 204(1), pp. 65–73. 0022-3115 10.1016/0022-3115(93)90200-I
Ukai, S., Harada, M., Okada, H., Inoue, M., Nomura, S., Shikakura, S., Nishida, T., Fujiwara, M., and Asabe, K., 1993, “Tube Manufacturing and Mechanical Properties of Oxide Dispersion Strengthened Ferritic Steel,” J. Nucl. Mater., 204(1), pp. 74–80. 0022-3115 10.1016/0022-3115(93)90201-9
Cho, H. S., and Kimura, A., 2007, “Corrosion Resistance of High-Cr Oxide Dispersion Strengthened Ferritic Steels in Super-Critical Pressurized Water,” J. Nucl. Mater., 367–370(Part B), pp. 1180–1184. 0022-3115 10.1016/j.jnucmat.2007.03.211
Kaito, T., Narita, S., and Ukai, T., 2004, “High Temperature Oxidation Behavior of ODS Steels,” J. Nucl. Mater., 329–333(Part B), pp. 1388–1392. 0022-3115 10.1016/j.jnucmat.2004.04.203
Cho, H. S., Ohkubo, H., and Iwata, N., 2006, “Improvement of Compatibility of Advanced Ferritic Steels With Super Critical Pressurized Water Toward a Higher Thermally Efficient Water-Cooled Blanket System,” Fusion Eng. Des., 81(8–14), pp. 1071–1076. 0920-3796 10.1016/j.fusengdes.2005.09.056
Cho, H. S., Kimura, A., Ukai, S., and Fujiwara, M., 2004, “Corrosion Properties of Oxide Dispersion Strengthened Steels in Supercritical Water Environment,” J. Nucl. Mater., 329–333(Part A), pp. 387–391. 0022-3115 10.1016/j.jnucmat.2004.04.040
Penttilä, S., Betova, I., Bojinov, M., Kinnunen, P., and Toivonen, A., 2011, “Estimation of Kinetic Parameters of the Corrosion Layer Constituents on Steels in Supercritical Water Coolant Conditions,” Corros. Sci., 53(12), pp. 4193–4203. 0010-938X 10.1016/j.corsci.2011.08.029
Bojinov, M., Kinnunen, P., Lundgren, K., and Wikmark, G., 2005, “A Mixed-Conduction Model for the Oxidation of Stainless Steel in a High-temperature Electrolyte. Estimation of Kinetic Parameters of Oxide Layer Growth and Restructuring,” J. Electrochem. Soc., 152(2), pp. B250–B261. 0013-4651 10.1149/1.1931447
Bojinov, M., Galtayries, A., Kinnunen, P., Machet, A., and Marcus, P., 2007, “Estimation of the Parameters of Oxide Film Growth on Nickel-Based Alloys in High-Temperature Water Electrolytes,” Electrochim. Acta, 52(26), pp. 7475–7483. 0013-4686 10.1016/j.electacta.2007.06.002
Betova, I., Bojinov, M., Kinnunen, P., Lundgren, K., and Saario, T., 2008, “Mixed-Conduction Model for Stainless Steel in a High-Temperature Electrolyte: Estimation of Kinetic Parameters of Inner Layer Constituents,” J. Electrochem. Soc., 155(2), pp. C81–C92. 0013-4651 10.1149/1.2818774
Betova, I., Bojinov, M., Kinnunen, P., Lundgren, K., and Saario, T., 2009, “Influence of Zn on the Oxide Layer on AISI 316L (NG) Stainless Steel in Simulated Pressurized Water Reactor Coolant,” Electrochim. Acta, 54(3), pp. 1056–1069. 0013-4686 10.1016/j.electacta.2008.08.040
Betova, I., Bojinov, M., Karastoyanov, V., Kinnunen, P., and Saario, T., “Effect of Water Chemistry on the Oxide Film on Alloy 690 During Simulated Hot Functional Testing of a Pressurized Water Reactor,” Corros. Sci., 58(1), pp. 20–32. 0010-938X 10.1016/j.corsci.2012.01.002
Messaoudi, K., Huntz, A. M., and Lesage, B., 1998, “Diffusion and Growth Mechanism of Al2O3 Scales on Ferritic Fe-Cr-Al Alloys,” Mater. Sci. Eng. A, 247(1), pp. 248–262. 10.1016/S0921-5093(97)00711-9
Chevalier, S., Nivot, C., and Larpin, J. P., 2003, “Influence of Reactive Element Oxide Coatings on the High Temperature Oxidation Behavior of Alumina-Forming Alloys,” Oxid. Metals, 61(3/4), pp. 195–217. 0030-770X 10.1023/B:OXID.0000025331.25452.35
Fromhold, A. T., Jr., and Cook, E. L., 1967, “Diffusion Currents in Large Electric Fields for Discrete Lattices,” J. Appl. Phys., 38(4), pp. 1546–1553. 0021-8979 10.1063/1.1709721
Sloppy, J. D., Lu, Z., Dickey, E. C., and Macdonald, D. D., 2013, “Growth Mechanism of Anodic Tantalum Pentoxide Formed in Phosphoric Acid,” Electrochim. Acta, 87(1), pp. 82–91. 0013-4686 10.1016/j.electacta.2012.08.014
Crank, J., and Nicolson, P., 1947, “A Practical Method for Numerical Evaluation of Solutions of Partial Differential Equations of the Heat Conduction Type,” Proc. Camb. Phil. Soc., 43(1), pp. 50–61. 0008-1981 10.1017/S0305004100023197
Asteman, H., Svensson, J.-E., Norell, M., and Johansson, L.-G., 2000, “Influence of Water Vapor and Flow Rate on the High-Temperature Oxidation of 304L: Effect of Chromium Oxide Hydroxide Evaporation,” Oxid. Met., 54(1/2), pp. 11–26. 0030-770X 10.1023/A:1004642310974
Asteman, H., Svensson, J.-E., and Johansson, L.-G., 2002, “Evidence for Chromium Evaporation Influencing the Oxidation of 304L: The Effect of Temperature and Flow Rate,” Oxid. Met., 57(3/4), pp. 193–216. 0030-770X 10.1023/A:1014877600235
Zhang, L., Zhu, F., and Tang, R., 2009, “Corrosion Mechanisms of Candidate Structural Materials for Supercritical Water-Cooled Reactor,” Front. Energy Power Eng. China, 3(2), pp. 223–240.
Allen, T. R., Busby, J. T., Was, G. S., and Kenik, E. A., 1998, “On the Mechanism of Radiation-Induced Segregation in Austenitic Fe–Cr–Ni alloys,” J. Nucl. Mater., 255(1), pp. 44–58. 0022-3115 10.1016/S0022-3115(98)00010-5
Fukuya, K., and Fujii, K., 2009, “A Multicomponent Model of Radiation-Induced Segregation for Commercial Stainless Steels,” J. Nucl. Sci. Technol., 46(7), pp. 744–752. 0022-3131 10.1080/18811248.2007.9711581


Grahic Jump Location
Fig. 1

Simplified scheme of the growth of the inner and outer layers of the film formed on a Fe-Cr-Al alloy according to the proposed approach

Grahic Jump Location
Fig. 2

Atomic fractions of oxide constituents versus depth on MA956 (above) and PM2000 (below) oxidized for 2000 hr at 650°C. Left: major constituents; right: minor constituents. Sigmoid fits to determine the position of the alloy/oxide interface are shown as vertical solid lines

Grahic Jump Location
Fig. 3

Comparison between the experimental (points) and calculated according to the model procedure (solid lines) fractions of metallic constituents (Fe, Cr, Al, Ni, Mn, Si, Ti, and Nb) in the oxide formed on (a) MA956 for 600 hr, (b) PM2000 for 600 hr, (c) MA956 for 2000 hr, and (d) MA956 for 2000 hr

Grahic Jump Location
Fig. 4

Sensitivity study of the rate constants of oxidation at the alloy/inner layer interface (k1Fe, k1Cr, k1Al, k1Mn, k1Si, k1Nb, k1Ti, and k2) as well as the rate constant of production of trivalent chromium vacancies (k3Cr) for the oxide formed on MA956 for 1000 hr. Dashed lines represent variation of the respective parameters with 10%, respectively

Grahic Jump Location
Fig. 5

Rate constants of inner layer growth (top), generation of cation vacancies (middle), and consumption of interstitial cations (bottom) expressed versus time of exposure

Grahic Jump Location
Fig. 6

Diffusion coefficients of point defects in the inner layer of the oxide on PM2000 (top) and MA956 (bottom) expressed versus time of exposure

Grahic Jump Location
Fig. 7

Diffusion coefficients of main constituents in the transition layer of PM2000 (top) and MA956 (bottom) expressed versus time of exposure

Grahic Jump Location
Fig. 8

Comparison between the oxide thicknesses calculated from the model (open symbols) and the thicknesses estimated from the experimental GDOES depth profiles (closed symbols). Experimental thicknesses corrected by subtracting 0.05–0.1 μm of contamination layer




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In