0
Research Papers

Supercritical Oxidation of Boiler Tube Materials

[+] Author and Article Information
Satu Tuurna

VTT Technical Research Centre of Finland Ltd.,
P.O. Box 1300, 33101 Tampere, Finland
e-mail: satu.tuurna@vtt.fi

Sanni Yli-Olli

VTT Technical Research Centre of Finland Ltd.,
P.O. Box 1000, 02044 VTT Espoo, Finland
e-mail: sanni.yli-olli@vtt.fi

Sami Penttilä

VTT Technical Research Centre of Finland Ltd.,
P.O. Box 1000, 02044 VTT Espoo, Finland
e-mail: sami.penttila@vtt.fi

Pertti Auerkari

VTT Technical Research Centre of Finland Ltd.,
P.O. Box 1000, 02044 VTT Espoo, Finland
e-mail: pertti.auerkari@vtt.fi

Xiao Huang

Department of Mechanical and Aerospace Engineering,
Carleton University,
Ottawa, ON K1S 5B6, Canada
e-mail: Xiao.Huang@carleton.ca

Manuscript received May 26, 2015; final manuscript received August 13, 2015; published online February 29, 2016. Assoc. Editor: Thomas Schulenberg.

ASME J of Nuclear Rad Sci 2(2), 021005 (Feb 29, 2016) (7 pages) Paper No: 15-1095; doi: 10.1115/1.4031338 History: Received May 26, 2015; Accepted August 13, 2015

The advantage of using supercritical water (SCW) systems for power generation is based on the increased thermodynamic efficiency when operating at higher temperature and pressure. Steam oxidation has become an important issue for power plants as operating temperatures increase from current to 650°C and even higher. Three alloys, FeCrAlY, NiCrAl, and Sanicro 25, were investigated in an elevated steam oxidation condition. All three materials showed relatively good initial SCW oxidation resistance, but after 100 hr, the oxidation rate of FeCrAlY increased rapidly compared to NiCrAl and Sanicro 25, which both showed a steadier and lower rate of oxide growth and weight gain.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Sarver, J. M., and Tanzosh, J. M., 2013, “Effect of Temperature, Alloy Composition and Surface Treatment on the Steamside Oxidation/Oxide Exfoliation Behavior of Candidate A-USC Boiler Materials,” Proceedings of the 7th International Conference on Advances in Materials Technology for Fossil Power Plants, D. Gandy, , and J. Shingledecker, eds., ASM International, OH, pp. 765–776.
Ennis, P. J., and Quadakkers, W. J., 2007, “Implications of Steam Oxidation for the Service Life of High-Strength Martensitic Steel Components in High-Temperature Plant,” Int. J. Pressure Vessels Piping, 84(1–2), pp. 82–87. 10.1016/j.ijpvp.2006.09.008
Lukaszewicz, M., Dudziak, T., Nicholls, J. R., and Simms, N. J., 2011, “Steam Oxidation of Superheater/Reheater Alloys: Impact of Steam Flow Rates and Specimen Geometries,” Proceedings of EUROCORR 2011, Swerea KIMAB, Sweden, pp. 1788–1816, EFC Paper No. 325.
Wright, I. G., and Dooley, R. B., 2010, “A Review of the Oxidation Behaviour of Structural Alloys in Steam,” Int. Mater. Rev., 55(3), pp. 129–167. 0950-6608 10.1179/095066010X12646898728165
Barnard, P. M., Buchanan, L. W., and Barrie, M., 2010, “Material Developments for Supercritical Boilers and Pipework—Bridging the Gap?” Proceedings of the 9th Liege Conference: Materials for Advanced Power Engineering, J. Lecomte-Beckers, , Q. Contrepois, T. Beck, and B. Kuhn, eds., Forschungszentrum Jülich, Germany, pp. 39–54.
Abe, F., Kern, T-U., and Viswanathan, R., 2008, Creep-Resistant Steels, Woodhead Publishing, England.
Chai, G., Kjellström, P., and Boström, M., 2013, “Creep and Fracture Behaviors of an Advanced Heat Resistant Austenitic Stainless Steel for A-USC Power Plant,” Proceedings of the 13th International Conference on Fracture, Beijing, China, Curran Associates, Red Hook, NY.
Aguero, A., Muelas, R., and Gonzalez, V., 2008, “HVOF Coatings for Steam Oxidation Protection,” Mater. Corros., 59(5), pp. 393–401. 10.1002/(ISSN)1521-4176
Saunders, S. R. J., Monteiro, M., and Rizzo, F., 2008, “The Oxidation Behaviour of Metals and Alloys at High Temperatures in Atmospheres Containing Water Vapour: A Review,” Prog. Mater. Sci., 53(5), pp. 775–837. 0079-6425 10.1016/j.pmatsci.2007.11.001
Allam, I., Whittle, D., and Stringer, J., 1978, “The Oxidation Behavior of CoCrAl Systems Containing Active Element Additions,” Oxid. Met., 12(1), pp. 35–66. 0030-770X 10.1007/BF00609974
Huang, X., Guzonas, D., and Li, J., 2015, “Characterisation of Fe–20Cr–6Al–Y Model Alloy in Supercritical Water,” Corros. Eng., Sci. Technol., 50(2), pp. 137–148. 10.1179/1743278214Y.0000000210
Huang, X., and Guzonas, D., 2014, “Characterization of Ni–20Cr–5Al Model Alloy in Supercritical Water,” J. Nucl. Mater., 445(1–3), pp. 298–307. 0022-3115 10.1016/j.jnucmat.2013.11.011
Xu, P., Zhao, L., Sridharan, K., and Allen, T., 2012, “Oxidation Behaviour of Grain Boundary Engineered Alloy 690 in Supercritical Water Environment,” J. Nucl. Mater., 422(1–3), pp. 143–151. 0022-3115 10.1016/j.jnucmat.2011.12.022
Bischoff, J., Motta, A., Eichfeld, C., Comstock, R., Cao, G., and Allen, T., 2013, “Corrosion of Ferritic-Martensitic Steels in Steam and Supercritical Water,” J. Nucl. Mater., 441(1–3), pp. 604–611. 0022-3115 10.1016/j.jnucmat.2012.09.037
Allen, T., Sridharan, K., Chen, Y., Tan, L., Ren, X., and Kruizenga, A., 2008, “Research and Development on Materials Corrosion Issues in Supercritical Water Environment,” Proceedings of the 15th International Conference on the Properties of Water and Steam (ICPWS XV), Radisson SAS Hotel Berlin, Germany, Sept. 7–11, pp. 1–12.
Nie, S. H., Chen, Y., Ren, X., Sridharan, K., and Allen, T. R., 2010, “Corrosion of Alumina-Forming Austenitic Steel Fe-20Ni-14Cr-3Al-0.6Nb-0.1Ti,” J. Nucl. Mater., 399(2–3), pp. 231–235. 0022-3115 10.1016/j.jnucmat.2010.01.025
Penttilä, S., 2008, “Materials for the SCWR Concept,” Oral presentation in GEN4FIN Seminar, Lappeenranta University of Technology, Lappeenranta, Finland, http://gen4fin.vtt.fi/, accessed July 23 2015.
Kofstad, P., 1988, High Temperature Corrosion, Elsevier Applied Science Publishers, London.
Asteman, H., Svensson, J. E., and Johansson, L.-G., 2002, “Evidence for Chromium Evaporation Influencing the Oxidation of 304L: The Effect of Temperature and Flow Rate,” Oxid. Met., 57(3–4), pp. 193–216. 0030-770X 10.1023/A:1014877600235
Wright, I. G., and Pint, B. A., 2002, “An Assessment of the High-Temperature Oxidation Behavior of Fe-Cr Steels in Water Vapor and Steam,” .
Ehlers, J., Young, D. J., Smaardijk, E. J., Tyagi, A. K., Penkalla, H. J., Singheiser, L, and Quadakkers, W. J., 2006, “Enhanced Oxidation of the 9%Cr Steel P91 in Water Vapour Containing Environments,” Corros. Sci., 48(11), pp. 3428–3454. 0010-938X 10.1016/j.corsci.2006.02.002
Tuurna, S., Pohjanne, P., Yli-Olli, S., Coda Zabetta, E., and Vänskä, K., 2013, “Fireside Corrosion and Carburization of Superheater Materials in Simulated Oxyfuel Combustion Conditions,” Proceedings of the 7th International Conference on Advances in Materials Technology for Fossil Power Plants, D. Gandy, , and J. Shingledecker, eds., ASM International, OH, pp. 881–891.
Holcomb, G. R., 2009, “Steam Oxidation and Chromia Evaporation in Ultrasupercritical Steam Boilers and Turbines,” J. Electrochem. Soc., 156(9), pp. C292–C297. 0013-4651 10.1149/1.3155442

Figures

Grahic Jump Location
Fig. 1

Comparison of weight changes of selected alloys (800H=Fe-32Ni-20Cr-0.76Mn-0.57Ti-0.5Al-0.42Cu, AFA=Fe-20Ni-14Cr-3Al-0.6Nb-0.1Ti, 316=Fe-17Cr-10Ni-2Mn-2Mo-0.65Si, D9=Fe-16Ni-14Cr-2Mn-2Mo-0.6Si-0.3Ti, AISI-347=Fe-11Ni-17.6Cr-2Mn-0.56Nb-0.29Si) with FeCrAlY and NiCrAl [13-17]

Grahic Jump Location
Fig. 2

Specimen rack and the samples before exposure to SCW (scale in mm)

Grahic Jump Location
Fig. 3

Schematic presentation of the SCW autoclave system with water recirculation loops

Grahic Jump Location
Fig. 6

3D surface profiles of Sanicro 25 after (a) 300 hr and (b) 1000 hr exposure

Grahic Jump Location
Fig. 5

3D surface profiles of NiCrAl after (a) 300 hr and (b) 1000 hr exposure

Grahic Jump Location
Fig. 4

3D surface profiles of FeCrAlY after (a) 300 hr and (b) 1000 hr exposure

Grahic Jump Location
Fig. 17

Weight gain (mg/cm2) for tested materials after exposure at 650°C/250 bar. Asterisk denotes 100 h specimen not available

Grahic Jump Location
Fig. 16

Composition profiles of Sanicro 25 after 1000 hr exposure

Grahic Jump Location
Fig. 15

GDOES analyses of the oxide formed on NiCrAl at 650°C during 1000 hr exposure

Grahic Jump Location
Fig. 14

GDOES analyses of the oxide formed on FeCrAlY at 650°C during 1000 hr exposure

Grahic Jump Location
Fig. 13

Microstructure and EDX analysis (wt%) of Sanicro 25 surface after 1000 hr exposure

Grahic Jump Location
Fig. 12

Microstructure and EDX analysis (wt%) of NiCrAl surface after 1000 hr exposure

Grahic Jump Location
Fig. 11

EDX analyses (wt%) of the oxide formed on the surface of FeCrAlY after 1000 hr

Grahic Jump Location
Fig. 10

Oxides grown on Sanicro 25 after 1000 hr exposure

Grahic Jump Location
Fig. 9

Oxides grown on NiCrAl after 1000 hr exposure

Grahic Jump Location
Fig. 8

Oxides grown on FeCrAlY after 1000 hr exposure

Grahic Jump Location
Fig. 7

Microstructure and EDX analysis results of FeCrAlY surface after 1000 hr exposure

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In