0
Research Papers

Iodine Benchmarks in the SARNET Network of Excellence

[+] Author and Article Information
Tim Haste

Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Centre d’Etudes de Cadarache,
BP 3-13115, Saint-Paul-Lez-Durance Cedex, France
e-mail: tim.haste@irsn.fr

Mirco Di Giuli

Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Centre d’Etudes de Cadarache,
BP 3-13115, Saint-Paul-Lez-Durance Cedex, France
e-mail: mirco.digiuli-enea@irsn.fr

Gunter Weber

Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH,
Boltzmannstraße 14, 85748 Garching bei München, Germany
e-mail: gunter.weber@grs.de

Sebastian Weber

Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH,
Boltzmannstraße 14, 85748 Garching bei München, Germany
e-mail: sebastian.weber@grs.de

1Corresponding author.

Manuscript received March 12, 2015; final manuscript received September 11, 2015; published online February 29, 2016. Assoc. Editor: Leon Cizelj.

2Present address: Institute for Applied Energy, Tokyo, Japan, e-mail: mirco@iae.or.jp.

ASME J of Nuclear Rad Sci 2(2), 021022 (Feb 29, 2016) (9 pages) Paper No: NERS-15-1026; doi: 10.1115/1.4031652 History: Received March 12, 2015; Accepted September 11, 2015

Accurate calculation of iodine behavior in the containment is very important in determining the potential radioactive release to the environment in light water reactor severe accidents (SAs). Of particular significance is the behavior of gas phase iodine, particularly organic iodine, which is difficult to remove by filtration, e.g., in containment venting systems. Iodine behavior is closely linked with the containment thermal hydraulics, which have a major influence on the distribution of iodine throughout the containment atmosphere and sump. In the European 7th Framework SARNET project, European Commission (EC) cofunded from 2007 to 2013, SA modeling code capability was assessed through two integral benchmarks. In the first, the basis was the German THAI Iod-11/12 tests, where molecular iodine transport with atmospheric flows and iodine interactions with steel surfaces were emphasized. In the second, data from the international Phébus FPT3 test were used, where all aspects of SAs were studied from core degradation, fission product (FP) release, circuit transport/deposition, and containment behavior using realistic FP sources. Thermal hydraulics in the containment were simpler, being well-mixed, and radiolytic interactions of iodine, e.g., with painted surfaces, were studied. These interactions may be an important source of organic iodine in the containment atmosphere. The two benchmarks are thus complementary. In the FPT3 exercise, the calculations could predict the containment thermal hydraulic conditions fairly well. For the more detailed data from THAI, differences were noted for atmospheric flows and relative humidities, outside experimental uncertainties, affecting iodine behavior. The FPT3 iodine results themselves showed a spread in calculated results outside data uncertainties, indicating the need for model improvements in this area, e.g., for radiolytic interaction of iodine with paint. Experimental programs to generate the necessary data needed for code improvement have been recently completed, e.g., in the OECD/THAI, THAI2, BIP, and BIP2 projects, or are in progress, in OECD/STEM and EC/PASSAM. When model improvements have been made, repeat benchmarks are planned to check progress toward code convergence with experimental data, e.g., under the aegis of the new NUGENIA association of which SARNET now forms a part.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Van Dorsselaere, J.-P., Auvinen, A., Beraha, D., Chatelard, P., Herranz, L. E., Journeau, C. H., Klein-Heßling, W., Kljenak, I., Miassoedov, A., Paci, S., and Zeyen, R., 2015, “Recent Severe Accident Research Synthesis of the Major Outcomes From the SARNET Network,” Nucl. Eng. Des., 291, pp. 19–34. 10.1016/j.nucengdes.2015.03.022
Clément, B., 2007, “State of the Art Report on Iodine Chemistry,” OECD Nuclear Energy Agency, Issy-les-Moulineaux, France, .
Weber, G., Herranz, L. E., Bendiab, M., Fontanet, J., Funke, F., Gonfiotti, B., Ivanov, I., Krajewski, S., Manfredini, A., Paci, S., Pelzer, M., and Sevón, T., 2013, “Thermal-Hydraulic–Iodine Chemistry Coupling: Insights Gained From the SARNET Benchmark on the THAI Experiments Iod-11 and Iod-12,” Nucl. Eng. Des., 265, pp. 95–107. 10.1016/j.nucengdes.2013.07.012
Klein-Heßling, W., Sonnenkalb, M., Jacquemain, D., Clément, B., Raimond, E., Dimmelmeier, H., Azarian, G., Ducros, G., Journeau, C., Herranz, L. E., Schumm, A., Miassoedov, A., Kljenak, I., Pascal, G., Bechta, S., Güntay, S., Koch, M. K., Ivanov, I., Auvinen, A., and Lindholm, I., 2014, “Conclusions on Severe Accident Research Priorities,” Ann. Nucl. Energy, 74, pp. 4–11. 10.1016/j.anucene.2014.07.015
Weber, G., Funke, F., and Poss, G., 2010, “Iodine Transport and Behaviour in Large-Scale THAI Tests,” Proceedings of the 4th European Review Meeting on Severe Accident Research (ERMSAR-2010), ENEA, Bologna, Italy.
Payot, F., Haste, T., Biard, B., Bot-Robin, F., Devoy, J., Garnier, Y., Guillot, J., Manenc, C. H., and March, P. H., 2011, “FPT3 Final Report,” IRSN, St-Paul-lez-Durance, France, .
Bottomley, P. D. W., Clément, B., Haste, T., Jacquemain, D., Powers, D. A., Schwarz, M., Teisseire, B., and Zeyen, R., eds., 2013, “Phébus FP Final Seminar,” Ann. Nucl. Energy, 61, pp. 1–230. [CrossRef]
Clément, B., and Zeyen, R., 2005, “The Phebus Fission Product and Source Term International Programs,” Proceedings of the 14th International Conference Nuclear Energy for New Europe, Bled, Slovenia, http://www.nss.si/proc/bled2005/.
Grégoire, A.-C., Kalilainen, J., Cousin, F., Mutelle, H., Cantrel, L., Auvinen, A., Haste, T., and Sobanska, S., 2015, “Studies on the Role of Molybdenum on Iodine Transport in the RCS in Nuclear Severe Accident Conditions,” Ann. Nucl. Energy, 78, pp. 117–129. 10.1016/j.anucene.2014.11.026
Gouello, M., Mutelle, H., Cousin, F., Sobanska, S., and Blanquet, E., 2013, “Analysis of the Iodine Gas Phase Produced by Interaction of CsI and MoO3 Vapours in Flowing Steam,” Nucl. Eng. Des., 263, pp. 462–472. 10.1016/j.nucengdes.2013.06.016
Simondi-Teisseire, B., Girault, N., Payot, F., and Clément, B., 2013, “Iodine Behaviour in the Containment in Phébus FP Tests,” Ann. Nucl. Eng., 61, pp. 157–169. 10.1016/j.anucene.2013.02.039
Haste, T., Auvinen, A., Cantrel, L., Kalilainen, J., Kärkelä, T., and Simondi-Teisseire, B., 2012, “Progress With Iodine Chemistry Studies in SARNET2,” Proceedings of the 21st International Conference Nuclear Energy for New Europe, Nuclear Society of Slovenia, Ljubljana, Slovenia.
Di Giuli, M., Haste, T., and Biehler, R., 2014, “SARNET Benchmark on the Phébus FPT3 Integral Experiment on Core Degradation and Fission Product Behaviour,” Proceedings of the 23rd International Conference Nuclear Energy for New Europe, Nuclear Society of Slovenia, Ljubljana, Slovenia.
Di Giuli, M., Haste, T., and Biehler, R., 2012, “Final Comparison Report on the Phébus FPT3 Benchmark,” IRSN, St-Paul-lez-Durance, France, .
Clément, B., and Haste, T., 2003, “Comparison Report on International Standard Problem ISP-46 (Phebus FPT1)—Integral Experiment on Reactor Severe Accidents,” OECD Nuclear Energy Agency, Issy-les-Moulineaux, France, .
Bieliauskas, A., and Haste, T., 2011, “Specifications of SARNET2 Phébus FPT3 Benchmark,” IRSN, St-Paul-lez-Durance, France, Revision 2, IRSN Internal Document, May.
Haste, T., Payot, F., Manenc, C. H., Clément, B., March, P. H., Simondi-Teisseire, B., and Zeyen, R., 2012, “Study of Boron Behaviour in the Primary Circuit of Water Reactors Under Severe Accident Conditions: A Comparison of Phebus FPT3 Results With Other Recent Integral and Separate-Effects Data,” Nucl. Eng. Des., 246, pp. 147–156. 10.1016/j.nucengdes.2011.08.031
Weber, G., Herranz, L. E., Bendiab, M., Fontanet, J., Funke, F., Gonfiotti, B., Ivanov, I., Krajewski, S., Manfredini, A., Paci, S., Pelzer, M., and Sevón, T., 2012, “SARNET2 WP8 Benchmark on the THAI Iodine Multi-Compartment Tests Iod-11 and Iod-12,” GRS Garching, Germany, SARNET Internal Document SARNET2-ST-D8.4.
Weber, G., 2012, “Specification of the SARNET-2 WP8 THAI Benchmark,” GRS Garching, Germany, SARNET Internal Document SARNET2-ST-D8.2.
Herranz, L. E., Haste, T., and Kärkelä, T., 2015, “Recent Advances in the Source Term Area Within the SARNET European Severe Accident Research Network,” Nucl. Eng. Des., 288, pp. 56–74. 10.1016/j.nucengdes.2015.03.014
Chatelard, P., Reinke, N., Arndt, S., Belon, S., Cantrel, L., Carenini, L., Chevalier-Jabet, K., Cousin, F., Eckel, J., Jacq, F., Marchetto, C., Mun, C., , and Piar, L., 2014, “ASTEC V2 Severe Accident Integral Code Main Features, Current V2.0 Modelling Status, Perspectives,” Nucl. Eng. Des., 272, pp. 119–135. 10.1016/j.nucengdes.2013.06.040
Bosland, L., Cantrel, L., Girault, N., and Clément, B., 2010, “Modelling of Iodine Radiochemistry in the ASTEC Severe Accident Code: Description and Application to FPT-2 PHEBUS Test,” Nucl. Technol., 171(1), pp. 88–107.
Allelein, H.-J., Arndt, S., Klein-Heßling, W., Schwarz, S., Spengler, C., and Weber, G., 2008, “COCOSYS: Status of Development and Validation of the German Containment Code System,” Nucl. Eng. Des., 238, pp. 872–889. 10.1016/j.nucengdes.2007.08.006
Weber, G., and Funke, F., 2009, “Description of the Iodine Model AIM-3 in COCOSYS,” GRS Garching, Germany, .
Parozzi, F., and Paci, S., 2006, “Development and Validation of the ECART Code for the Safety Analysis of Nuclear Installations,” 14th International Conference on Nuclear Engineering 2006, Miami, FL.
Dickinson, S., and Sims, H. E., 2000, “Development of the INSPECT Model for the Prediction of Iodine Volatility From Irradiated Solutions,” Nucl. Technol., 129(3), pp. 374–386.
Gauntt, R. O., Cash, J. E., Cole, R. K., Erickson, C. M., Humphries, L. L., Rodriguez, S. B., and Young, M. F., 2005, “MELCOR Computer Code Manuals: Primer and Users’ Guide,” Vol. 1, Sandia National Laboratories, NUREG/CR-6119, Rev. 3.
Wren, J. C., Glowa, G. A., and Ball, J. M., 1999, “A Simplified Model for Containment Iodine Chemistry and Transport: Model Description and Validation Using Stainless Steel RTF Test Results,” Proceedings of the OECD Workshop on Iodine Aspects of Severe Accident Management, Vantaa, Finland, OECD Nuclear Energy Agency, Issy-les-Moulineaux, France, OECD/NEA/CSNI/R(99)7.
Kim, H.-C., and Cho, S.-W., 2012, “Simulation of Iodine Behavior by Coupling of a Standalone Model With MELCOR,” Transactions of the Korean Nuclear Society, Spring Meeting, Jeju, Korea, Korean Nuclear Society, Daejon, Korea.
Chatelard, P., Reinke, N., Arndt, S., Belon, S., Cantrel, L., Carenini, L., Chevalier-Jabet, K., Cousin, F., Eckel, J., Jacq, F., Marchetto, C., Mun, C., and Piar, L., 2014, “ASTEC V2 Severe Accident Integral Code Main Features, Current V2.0 Modelling Status, Perspectives,” Nucl. Eng. Des., 272, pp. 119–135. 10.1016/j.nucengdes.2013.06.040
Weber, G., Funke, F., Krzykacz-Hausmann, B., and Klein-Hessling, W., 2014, “Uncertainty and Sensitivity Analysis on the Iodine Model in the Containment Code COCOSYS,” Proceedings of the 10th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operations and Safety (NUTHOS-10), Okinawa, Japan, http://www.nuthos10.org.
Austregesilo, H., Krzykacz-Hausmann, B., Skorek, T., and Weber, S., 2010, “Unsicherheits- und Sensitivitätsanalyse von Ergebnissen der Nachrechnung des PHÉBUS Versuchs FPT3 mit ATHLET-CD,” The Frame of Project RS 1173 “Validation of the Computer Code System ATHLET/ATHLET-CD,” GRS Garching, Germany, .
Chevalier-Jabet, K., Cousin, F., Cantrel, L., and Séropian, C., 2014, “Source Term Assessment With ASTEC and Associated Uncertainty Analysis Using SUNSET Tool,” Nucl. Eng. Des., 272, pp. 207–218. 10.1016/j.nucengdes.2013.06.042

Figures

Grahic Jump Location
Fig. 1

Schematic diagram of the experimental circuit in the Phébus bundle tests and its relation with a LWR

Grahic Jump Location
Fig. 2

Schematic diagram of the THAI facility

Grahic Jump Location
Fig. 3

ASTEC meshing for the Phébus FPT3 containment vessel by IRSN

Grahic Jump Location
Fig. 4

Examples of Phébus FPT3 benchmark comparison plots of calculated results against data for containment stand-alone cases: (a) mass of iodine deposited on painted surfaces, (b) mass of organic iodine in the gas phase, (c) mass of inorganic iodine moles in the gas phase, and (d) mass of iodine deposited on stainless steel surfaces. Uncertainties given are 1 standard deviation (1σ).

Grahic Jump Location
Fig. 5

MELCOR meshing of the THAI containment vessel by the University of Pisa (UNIPI) [18]

Grahic Jump Location
Fig. 6

Examples of THAI Benchmark comparison plots of calculated results against data for (a) Iod-12 atmospheric temperature in the dome at 8.4 m axial elevation (1σ=0.3°C), (b) Iod-12 RH at 7.7 m axial elevation (1σ=3%), (c) Iod-11 gaseous I2 concentration at 1.8 m axial elevation (1σ=20–30%), and (d) Iod-12 iodine concentration in the condensate of the lower gutter (1σ=5%)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In