0
SPECIAL SECTION PAPERS

Stand-Alone Containment Analysis of the Phébus Fission Products Test 1 With the ASTEC and the MELCOR Codes

[+] Author and Article Information
Bruno Gonfiotti

Department of Civil and Industrial Engineering,
University of Pisa,
Largo Lucio Lazzarino 1, Pisa 56122, Italy
e-mail: bruno.gonfiotti@for.unipi.it

Sandro Paci

Department of Civil and Industrial Engineering,
University of Pisa,
Largo Lucio Lazzarino 1, Pisa 56122, Italy
e-mail: sandro.paci@ing.unipi.it

Manuscript received September 27, 2017; final manuscript received September 15, 2017; published online March 5, 2018. Assoc. Editor: Asif Arastu.

ASME J of Nuclear Rad Sci 4(2), 020902 (Mar 05, 2018) (15 pages) Paper No: NERS-16-1115; doi: 10.1115/1.4038059 History: Received September 27, 2016; Revised September 15, 2017

The estimation of fission products (FPs) release from the containment system of a nuclear plant to the external environment during a severe accident (SA) is a quite complex task. In the last 30–40 yr, several efforts were made to understand and to investigate the different phenomena occurring in such a kind of accidents in the primary coolant system and in the containment. These researches moved along two tracks: understanding of involved phenomenologies through the execution of different experiments and creation of numerical codes capable to simulate such phenomena. These codes are continuously developed to reflect the actual SA state of the art, but it is necessary to continuously check that modifications and improvements are able to increase the quality of the obtained results. For this purpose, also a continuous verification and validation work should be carried out. Therefore, the aim of the present work is to re-analyze the Phébus fission products test 1 (FPT-1) test employing the accident source term evaluation code (ASTEC) and MELCOR codes (respectively, ASTEC v.2.0 revision 3 patch 3 and MELCOR V2.1.6840 version). The analysis focuses on the stand-alone containment aspects of the test, and three different modelizations of the containment vessel have been developed showing that at least 15/20 control volumes (CVs) are necessary for the spatial schematization to correctly predict the test thermal hydraulics and the aerosol behavior. Furthermore, the paper summarizes the main thermal-hydraulic results and presents different sensitivity analyses carried out on the aerosols and FPs behavior.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Van Dorsselaere, J.-P. , Auvinen, A. , Beraha, D. , Chatelard, P. , Herranz, L. E. , Journeau, C. , Klein-Hessling, W. , Kljenak, I. , Miassoedov, A. , Paci, S. , and Zeyen, R. , 2015, “ Recent Severe Accident Research Synthesis of the Major Outcomes From the SARNET Network,” Nucl. Eng. Des., 291, pp. 19–34. [CrossRef]
Jacquemain, D. , 2015, Nuclear Power Reactor Core Melt Accidents, Current State of Knowledge, EDP Sciences, Saint-Paul-lez-Durance, France.
Clément, B. , and Zeyen, R. , 2013, “ The Objectives of the Phébus FP Experimental Programme and Main Findings,” Ann. Nucl. Energy, 61, pp. 4–10. [CrossRef]
de Luze, O. , Barrachin, M. , and Repetto, G. , 2013, “ Early Phase Fuel Degradation in Phébus FP: Initiating Phenomena of Degradation in Fuel Bundle Tests,” Ann. Nucl. Energy, 61, pp. 23–35. [CrossRef]
Haste, T. , Payot, F. , and Bottomley, P. D. W. , 2013, “ Transport and Deposition in the Phébus FP Circuit,” Ann. Nucl. Energy, 61, pp. 102–121. [CrossRef]
Laurie, M. , March, P. , Simondi-Teisseire, B. , and Payot, P. , 2013, “ Containment Behaviour in Phébus FP,” Ann. Nucl. Energy, 60, pp. 15–27. [CrossRef]
March, P. , and Simondi-Teisseire, B. , 2013, “ Overview of the Facility and Experiments Performed in Phébus FP,” Ann. Nucl. Energy, 61, pp. 11–22. [CrossRef]
Brillant, G. , Marchetto, C. , and Plumecocq, W. , 2013, “ Fission Product Release From Nuclear Fuel II. Validation of ASTEC/ELSA on Analytical and Large Scale Experiments,” Ann. Nucl. Energy, 61, pp. 96–101. [CrossRef]
Jacquemain, D. , Bourdon, S. , de Braemaeker, A. , and Barrachin, M. , 2000, “ PHEBUS FPT-1 Final Report,” Institut de Radioprotection et de Sûrete´ Nucle´aire (IRSN), Saint-Paul-lez-Durance, France, Technical Report No. IP/00/479.
Scheurer, H. , Ktorza, C. , and Chrétien, A. M. , 1997, “ PHEBUS Data Book FPT1,” Institut de Radioprotection et de Sûrete´ Nucle´aire (IRSN), Saint-Paul-lez-Durance, France, Technical Report No. PH-PF IS/92/49.
Gyenes, G. , and Ammirabile, L. , 2011, “ Containment Analysis on the PHEBUS FPT-0. FPT-1 and FPT-2 Experiments,” Nucl. Eng. Des., 241(3), pp. 854–864. [CrossRef]
Martín-Fuertes, F. , Barbero, R. , Martín-Valdepeñas, J. M. , and Jiménez, M. A. , 2007, “ Analysis of Source Term Aspects in the Experiment Phebus FPT1 With the MELCOR and CFX Codes,” Nucl. Eng. Des., 237(5), pp. 509–523. [CrossRef]
Kim, H. , Kim, S. , Park, J. , and Cho, S. , 2013, “ Analysis of Phébus FP Experiments in Korea,” Ann. Nucl. Energy, 61, pp. 215–224. [CrossRef]
Herranz, L. E. , Vela-García, M. , Fontanet, J. , and del Prá, C. L. , 2007, “ Experimental Interpretation and Code Validation Based on the PHEBUS-FP Programme: Lessons Learnt From the Analysis of the Containment Scenario of FPT1 and FPT2 Tests,” Nucl. Eng. Des., 237(23), pp. 2210–2218. [CrossRef]
Kontautas, A. , and Urbonavičius, E. , 2009, “ Analysis of Aerosol Deposition in PHEBUS Containment During FPT-1 Experiment,” Nucl. Eng. Des., 239(7), pp. 1267–1274. [CrossRef]
Park, J. , Kim, D. , and Kim, H. , 2006, “ Summary of the Results From the Phebus FPT-1 Test for a Severe Accident and the Lessons Learned With MELCOR,” Nucl. Eng. Technol., 38(6), pp. 535–550. https://www.kns.org/jknsfile/v38/JK0380076.pdf
Clément, B. , Haste, T. , Krausmann, E. , Dickinson, S. , Gyenes, G. , Duspiva, J. , de Rosa, F. , Paci, S. , Martin-Fuertes, F. , Scholytssek, W. , Allelein, H. J. , Güntay, S. , Arien, B. , Marguet, S. , Leskovar, M. , and Sartmadjiev, A. , 2005, “ Thematic Network for a Phebus FPT1 International Standard Problem (THENPHEBISP),” Nucl. Eng. Des., 235(2–4), pp. 347–357. [CrossRef]
Klein-Hessling, W. , and Scheinges, B. , 1998, “ ASTEC V0 CPA Module Program Reference Manual,” Institut de Radioprotection et de Sûrete´ Nucle´aire (IRSN)/Gesellschaft fu¨r Anlagen- und Reaktorsicherheit mbH (GRS), Saint-Paul-lez-Durance, France, Technical Report No. ASTEC 01/06.
Arndt, S. , and Weber, G. , 1998, “ ASTEC V0 FIPHOST—A Module to Calculate Fission Product Transport in a Containment,” Institut de Radioprotection et de Sûrete´ Nucle´aire (IRSN)/Gesellschaft fu¨r Anlagen- und Reaktorsicherheit mbH (GRS), Saint-Paul-lez-Durance, France, Technical Report No. ASTEC 99/04.
Weber, G. , 1999, “ ASTEC V0 Description of Aerosol Models in the Containment Part of ASTEC (CPA),” Institut de Radioprotection et de Sûrete´ Nucle´aire (IRSN)/Gesellschaft fu¨r Anlagen- und Reaktorsicherheit mbH (GRS), Saint-Paul-lez-Durance, France, Technical Report No. ASTEC 99/05.
Bosland, L. , 2011, “ ASTEC V2.0 Rev2 Code IODE Modele: Iodine and Ruthenium Behaviour in the Containment,” Institut de Radioprotection et de Sûrete´ Nucle´aire (IRSN)/Gesellschaft fu¨r Anlagen- und Reaktorsicherheit mbH (GRS), Saint-Paul-lez-Durance, France, Technical Report No. DPAM-SEMIC-2011-345.
Guillard, G. , Jacq, F. , Seropian, C. , and Plumecocq, W. , 2007, “ ASTEC V1 Code SYSINT Module Management of Events and Safety Systems Interactions,” Institut de Radioprotection et de Sûrete´ Nucle´aire (IRSN)/Gesellschaft fu¨r Anlagen- und Reaktorsicherheit mbH (GRS), Saint-Paul-lez-Durance, France, Technical Report No. SEMCA-2007-293.
Humphries, L. L. , Cole, R. K. , Louie, D. L. , Figueroa, V. G. , and Young, M. F. , 2015, “ MELCOR Computer Code Manuals Vol 2. Reference Manual Version 2.1.6480,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND2015-6692-R. https://adamswebsearch2.nrc.gov/webSearch2/view?AccessionNumber=ML15300A473
Humphries, L. L. , Cole, R. K. , Louie, D. L. , Figueroa, V. G. , and Young, M. F. , 2015, “ MELCOR Computer Code Manuals Vol 1: Primer and User’s Guide,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND2015-6691-R. https://adamswebsearch2.nrc.gov/webSearch2/view?AccessionNumber=ML15300A479
Tills, J. , Notafrancesco, A. , and Phillips, J. , 2009, “ Application of the MELCOR Code to Design Basis PWR Large Dry Containment Analysis,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND2009-2858. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.453.1881&rep=rep1&type=pdf
Kontautas, A. , 2013, “ The Numerical Study of Aerosol and Radionuclide Transport in the Containments of Nuclear Power Plants,” Ph.D. thesis, Kaunas University of Technology, Kauna, Lithuania.
Simondi-Teissire, B. , Girault, N. , and Payot, F. , 2013, “ Iodine Behaviour in the Containment in Phébus FP Tests,” Ann. Nucl. Energy, 61, pp. 157–169.
Clément, B. , and Haste, T. , 2003, “ Thematic Network a PHEBUS FPT-1 International Standard Problem,” Institut de Radioprotection et de Sûrete´ Nucle´aire (IRSN), Saint-Paul-lez-Durance, France, Technical Report No. SEMAR 03/021.
Chatelard, P. , and Reinke, N. , 2013, “ Evolution of the Integral Code ASTEC V2.0-Rev3 With Respect to the Original V2.0 Version,” Institut de Radioprotection et de Sûrete´ Nucle´aire (IRSN)/Gesellschaft fu¨r Anlagen- und Reaktorsicherheit mbH (GRS), Saint-Paul-lez-Durance, France, Technical Report No. PSN-REG/SAG/2013-00079.
Chailan, L. , and Reinke, N. , 2009, “ Overview of the Integral Code ASTEC V2.0,” Institut de Radioprotection et de Sûrete´ Nucle´aire (IRSN)/Gesellschaft fu¨r Anlagen- und Reaktorsicherheit mbH (GRS), Saint-Paul-lez-Durance, France, Technical Report No. DPAM/SEMCA-2009-149. https://www.grs.de/sites/default/files/pdf/Overview_ASTEC.pdf
Kontautas, A. , and Urbonavicius, E. , 2008, “ Influence of Diffusive Layer and Aerosol Density on Aerosol Deposition in Phebus FPT-1 Experiment,” Nuclear Energy for New Europe, Portorož, Slovenia, Sept. 8–11, Paper No. 501.
Hinds, W. C. , 2012, Aerosol Technology: Properties, Behaviour, and Measurement of Airborne Particles, Wiley, Hoboken, NJ.

Figures

Grahic Jump Location
Fig. 1

Schematic overview of the Phébus facility (modified version of the figure appearing in Ref. [3])

Grahic Jump Location
Fig. 2

Experimental total pressure and r.h. of the containment

Grahic Jump Location
Fig. 3

Steam and H2 mass flow rates

Grahic Jump Location
Fig. 4

Wall temperatures and sump water pH evolution

Grahic Jump Location
Fig. 5

Experimental atmospheric temperature at different containment heights

Grahic Jump Location
Fig. 7

Sketch of the employed spatial models

Grahic Jump Location
Fig. 8

Total pressure trend

Grahic Jump Location
Fig. 9

Atmospheric temperature trend at 2.32 m

Grahic Jump Location
Fig. 10

Atmospheric temperature trend at 2.66 m and 3.0 m

Grahic Jump Location
Fig. 11

Atmospheric temperature trend at 4.02 m

Grahic Jump Location
Fig. 12

Atmospheric temperature trend at 4.36 m

Grahic Jump Location
Fig. 13

Relative humidity trend

Grahic Jump Location
Fig. 14

Condensation rate trend onto the wet condenser surfaces

Grahic Jump Location
Fig. 15

Atmospheric and deposited aerosol mass

Grahic Jump Location
Fig. 16

Evolution of the atmospheric iodine and the deposited iodine onto the wet condenser surfaces

Grahic Jump Location
Fig. 17

Iodine speciation in the sump water (MELCOR)

Grahic Jump Location
Fig. 18

Iodine speciation in the sump water (ASTEC)

Grahic Jump Location
Fig. 19

Total pressure—comparison against ISP-46

Grahic Jump Location
Fig. 20

Mean vessel temperature—comparison against ISP-46

Grahic Jump Location
Fig. 21

Mean r.h.—comparison against ISP-46

Grahic Jump Location
Fig. 22

Condensation rate—comparison against ISP-46

Grahic Jump Location
Fig. 23

Suspended aerosol mass—comparison against ISP-46

Grahic Jump Location
Fig. 24

AgI mass in sump—comparison against ISP-46

Grahic Jump Location
Fig. 25

Suspended iodine mass—comparison against ISP-46

Grahic Jump Location
Fig. 27

Results of the MELCOR sensitivity analyses on the dynamic shape factor—total deposited aerosol mass

Grahic Jump Location
Fig. 28

Results of the ASTEC sensitivity analyses on the dynamic shape factor—total deposited aerosol mass

Grahic Jump Location
Fig. 29

Results of the sensitivity analyses on the aerosol density—suspended aerosol mass

Grahic Jump Location
Fig. 30

Results of the ASTEC sensitivity analyses on the ratio of the thermal conductivity of the gas phase on the thermal conductivity of the aerosol particles—suspended aerosol mass

Grahic Jump Location
Fig. 31

Results of the MELCOR sensitivity analyses on the AMMD—suspended aerosol mass

Grahic Jump Location
Fig. 32

Results of the ASTEC sensitivity analyses on the AMMD—suspended aerosol mass

Grahic Jump Location
Fig. 33

Effects of HOI and I− partitioning on the iodine atmospheric mass

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In