0
SPECIAL SECTION PAPERS

Effect of Lead-Bismuth Eutectic Oxygen Concentration on the Onset of Dissolution Corrosion in 316 L Austenitic Stainless Steel at 450 °C

[+] Author and Article Information
Oksana Klok

Electrochemical and Surface Engineering
(SURF),
Vrije Universiteit Brussel (VUB),
Pleinlaan 2,
Brussel B-1050, Belgium;
SCK•CEN,
Boeretang 200,
Mol B-2400, Belgium
e-mail: oksana.klok@sckcen.be

Konstantina Lambrinou

SCK•CEN,
Boeretang 200,
Mol B-2400, Belgium
e-mail: klambrin@sckcen.be

Serguei Gavrilov

SCK•CEN,
Boeretang 200,
Mol B-2400, Belgium
e-mail: serguei.gavrilov@sckcen.be

Jun Lim

SCK•CEN,
Boeretang 200,
Mol B-2400, Belgium
e-mail: jun.lim@sckcen.be

Iris De Graeve

Electrochemical and Surface Engineering
(SURF),
Vrije Universiteit Brussel (VUB),
Pleinlaan 2,
Brussel B-1050, Belgium
e-mail: Iris.De.Graeve@vub.be

Manuscript received October 31, 2017; final manuscript received March 6, 2018; published online May 16, 2018. Assoc. Editor: Wenyue Zheng.

ASME J of Nuclear Rad Sci 4(3), 031019 (May 16, 2018) (7 pages) Paper No: NERS-17-1269; doi: 10.1115/1.4039598 History: Received October 31, 2017; Revised March 06, 2018

This work focuses on the effect of dissolved oxygen concentration in liquid lead-bismuth eutectic (LBE) on the onset of dissolution corrosion in a solution-annealed 316 L austenitic stainless steel. Specimens made of the same 316 L stainless steel heat were exposed for 1000 h at 450 °C to static liquid LBE with controlled concentrations of dissolved oxygen, i.e., 10−5, 10−6, and 10−7 mass%. The corroded 316 L steel specimens were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). A complete absence of dissolution corrosion was observed in the steel specimens exposed to liquid LBE with 10−5 and 10−6 mass% oxygen. In the same specimens, isolated “islands” of FeCr-containing oxides were also detected, indicating the localized onset of oxidation corrosion under these exposure conditions. On the other hand, dissolution corrosion with a maximum depth of 59 μm was detected in the steel specimen exposed to liquid LBE with 10−7 mass% oxygen. This suggests that the threshold oxygen concentration associated with the onset of dissolution corrosion in this 316 L steel heat lies between 10−6 and 10−7 mass% oxygen for the specific exposure conditions (i.e., 1000 h, 450 °C, static liquid LBE).

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Abderrahim, H. A. , 2012, “ Multi-Purpose Hybrid Research Reactor for High-Tech Applications a Multipurpose Fast Spectrum Research Reactor,” Int. J. Energy Res., 36(15), pp. 1331–1337. [CrossRef]
Müller, G. , Heinzel, A. , Konys, J. , Schumacher, G. , Weisenburger, A. , Zimmermann, F. , Engelko, V. , Rusanov, A. , and Markov, V. , 2002, “ Results of Steel Corrosion Tests in Flowing Liquid Pb/Bi at 420–600 °C After 2000 h,” J. Nucl. Mater., 301(1), pp. 40–46. [CrossRef]
Benamati, G. , Fazio, C. , Piankova, H. , and Rusanov, A. , 2002, “ Temperature Effect on the Corrosion Mechanism of Austenitic and Martensitic Steels in Lead-Bismuth,” J. Nucl. Mater., 301(1), pp. 23–27. [CrossRef]
Soler, L. , Martín, F. J. , Hernández, F. , and Gómez-Briceño, D. , 2004, “ Corrosion of Stainless Steels in Lead-Bismuth Eutectic Up to 600 °C,” J. Nucl. Mater., 335(2), pp. 174–179. [CrossRef]
Zhang, J. , Li, N. , Chen, Y. , and Rusanov, A. E. , 2005, “ Corrosion Behaviors of US Steels in Flowing Lead-Bismuth Eutectic (LBE),” J. Nucl. Mater., 336(1), pp. 1–10. [CrossRef]
Kurata, Y. , Futukawa, M. , and Saito, S. , 2005, “ Comparison of the Corrosion Behavior of Austenitic and Ferritic/Martensitic Steels Exposed to Static Liquid Pb-Bi at 450 and 550 °C,” J. Nucl. Mater., 343(1–3), pp. 333–340. [CrossRef]
Kurata, Y. , and Saito, S. , 2009, “ Temperature Dependence of Corrosion of Ferritic/Martensitic and Austenitic Steels in Liquid Lead-Bismuth Eutectic,” Mater. Trans., 50(10), pp. 2410–2417. [CrossRef]
Weisenburger, A. , Schroer, C. , Jianu, A. , Heinzel, A. , Konys, J. , Steiner, H. , Müller, G. , Fazio, C. , Gessi, A. , Babayan, S. , Kobzova, A. , Martinelli, L. , Ginestar, K. , Balbaud-Celerier, F. , Martin-Munoz, F. J. , and Crespo, L. S. , 2011, “ Long Term Corrosion on T91 and AISI1 316 L Steel in Flowing Lead Alloy and Corrosion Protection Barrier Development: Experiments and Models,” J. Nucl. Mater., 415(3), pp. 260–269. [CrossRef]
Kurata, Y. , 2013, “ Corrosion Behavior of Si-Enriched Steels for Nuclear Applications in Liquid Lead–Bismuth,” J. Nucl. Mater., 437(1–3), pp. 401–408. [CrossRef]
Zhang, J. , and Li, N. , 2008, “ Review of the Studies on Fundamental Issues in LBE Corrosion,” J. Nucl. Mater., 373(1–3), pp. 351–377. [CrossRef]
Yeliseyeva, O. , Tsisar, V. , and Benamati, G. , 2008, “ Influence of Temperature on the Interaction Mode of T91 and AISI 316 L Steels With Pb-Bi Melt Saturated by Oxygen,” Corros. Sci., 50(6), pp. 1672–1683. [CrossRef]
Sapundjiev, D. , Dyck, S. V. , and Bogaerts, W. , 2006, “ Liquid Metal Corrosion of T91 and A316 L Materials in Pb-Bi Eutectic at Temperatures 400-600 °C,” Corros. Sci., 48(3), pp. 577–594. [CrossRef]
Aiello, A. , Azzati, M. , Benamati, G. , Gessi, A. , Long, B. , and Scaddozzo, G. , 2004, “ Corrosion Behaviour of Stainless Steels in Flowing LBE at Low and High Oxygen Concentration,” J. Nucl. Mater., 335(2), pp. 169–173. [CrossRef]
Martinelli, L. , Courouau, J. L. , and Balbaud-Célérier, F. , 2011, “ Oxidation of Steels in Liquid Lead Bismuth: Oxygen Control to Achieve Efficient Corrosion Protection,” Nucl. Eng. Des., 241(5), pp. 1288–1294. [CrossRef]
Yamaki, E. , Ginestar, K. , and Martinelli, L. , 2011, “ Dissolution Mechanism of 316 L in Lead-Bismuth Eutectic at 500 °C,” Corros. Sci., 53(10), pp. 3075–3085. [CrossRef]
Tsisar, V. , Schroer, C. , Wedemeyer, O. , Skrypnik, A. , and Konys, J. , 2014, “ Corrosion Behavior of Austenitic Steels 1.4970, 316 L and 1.4571 in Flowing LBE at 450 and 550 °C With 10−7 Mass% Dissolved Oxygen,” J. Nucl. Mater., 454(1–3), pp. 332–342. [CrossRef]
Schroer, C. , and Konys, J. , 2010, “ Quantification of the Long-Term Performance of Steels T91 and 316 L in Oxygen-Containing Flowing Lead-Bismuth Eutectic at 550 °C,” ASME J. Eng. Gas Turbines Power, 132(8), p. 082901. [CrossRef]
Stergar, E. , Lambrecht, M. , Gavrilov, S. , Lambrinou, K. , Marmy, P. , Ersoy, F. , and Gong, X. , 2011, “ MYRRHA Materials Assessment Report,” SCK•CEN, Mol, Belgium, Technical Report No. SCK•CEN-I-380.
Lim, J. , Manfredi, G. , Gavrilov, S. , Rosseel, K. , Aerts, A. , and Van den Bosch, J. , 2014, “ Control of Dissolved Oxygen in Liquid LBE by Electrochemical Oxygen Pumping,” Sens. Actuators B, 204, pp. 388–392. [CrossRef]
Van den Bosch, J. , and Almazouzi, A. , 2005, “ EUROTRANS-DEMETRA—Task 4.1.2: Reference Materials Procurement, Dispatching and Characterization, Procurement and Characterisation of T91 and SS316 L Plates,” SCK•CEN, Mol, Belgium, Technical Report No. SCK•CEN-R-4197.
Van den Bosch, J. , 2009, “ ADS Candidate Materials Compatibility With Liquid Metal in a Neutron Irradiation Environment,” Ph.D. thesis, Ghent University, Ghent, Belgium. http://publications.sckcen.be/dspace/handle/10038/997
Lim, J. , Manfredi, G. , Mariën, A. , and Van den Bosch, J. , 2013, “ Performance of Potentiometric Oxygen Sensors With LSM-GDC Composite Electrode in Liquid LBE at Low Temperatures,” Sens. Actuators B, 188, pp. 1048–1054. [CrossRef]
Lim, J. , Mariën, A. , Roseel, K. , Aerts, A. , and Van den Bosch, J. , 2012, “ Accuracy of Potentiometric Oxygen Sensors With Bi/Bi2O3 Reference Electrode for Use in Liquid LBE,” J. Nucl. Mater., 429(1–3), pp. 270–275. [CrossRef]
Tsisar, V. , Schroer, C. , Wedemeyer, O. , Skrypnik, A. , and Konys, J. , 2016, “ Long-Term Corrosion of Austenitic Steels in Flowing LBE at 400 °C and 10−7 Mass% Dissolved Oxygen in Comparison With 450 and 550 °C,” J. Nucl. Mater., 468, pp. 305–312. [CrossRef]
Lambrinou, K. , Charalampopoulou, E. , Van der Donck, T. , Delville, R. , and Schryvers, D. , 2017, “ Dissolution Corrosion of 316 L Austenitic Stainless Steels in Contact With Static Liquid Lead-Bismuth Eutectic at 500 °C,” J. Nucl. Mater., 490, pp. 9–27. [CrossRef]
Hosemann, P. , Frazer, D. , Stergar, E. , and Lambrinou, K. , 2016, “ Twin Boundary-Accelerated Ferritization of Austenitic Stainless Steels in Liquid Lead–Bismuth Eutectic,” Scr. Mater., 118, pp. 37–40. [CrossRef]
Schroer, C. , Wedemeyer, O. , Novotny, J. , Skrypnik, A. , and Konys, J. , 2014, “ Selective Leaching of Nickel and Chromium From Type 316 Austenitic Steel in Oxygen-Containing Lead–Bismuth Eutectic (LBE),” Corros. Sci., 84, pp. 113–124. [CrossRef]

Figures

Grahic Jump Location
Fig. 3

Backscattered electron images of 316 L steel specimens exposed at 450 °C for 1000 h in static LBE with oxygen concentration of 10−5 mass% (a), 10−6 mass% (b), and 10−7 mass% (c)

Grahic Jump Location
Fig. 2

Test conditions for 316 L steel specimens exposed to static liquid LBE with different concentrations of dissolved oxygen: (a) 10−5 mass%, (b) 10−6 mass%, and (c) 10−7 mass%; all tests were performed at 450 °C for 1000 h

Grahic Jump Location
Fig. 6

Schematic representation of the effect of the LBE oxygen concentration on the onset of dissolution corrosion in 316 L steels

Grahic Jump Location
Fig. 4

Backscattered electron images of (a) uniform- and (b) pit-type of dissolution attack, and (c) the transition zone between the two types of attack in the 316 L steel exposed to static LBE with 10−7 mass% oxygen. EDS line scans across uniform- (d) and pit-type (e) areas of dissolution attack.

Grahic Jump Location
Fig. 5

(a) Backscattered electron image of oxides situated above the dissolution zone and (b) EDS line scan across these oxides

Grahic Jump Location
Fig. 1

Schematic representation of the experimental setup used in this study

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In