0
Technical Brief

A Density Functional Theory Study on the Diffusion of Fission Gas Atoms in Uranium Dioxide

[+] Author and Article Information
Qiang Zhao

School of Nuclear Science and Engineering,
North China Electric Power University,
Beijing 102206, China
e-mail: qzhao@ncepu.edu.cn

Zheng Zhang

School of Nuclear Science and Engineering,
North China Electric Power University,
Beijing 102206, China
e-mail: zzhang@ncepu.edu.cn

Xiaoping Ouyang

School of Nuclear Science and Engineering,
North China Electric Power University,
Beijing 102206, China;
Northwest Institute of Nuclear Technology,
Xi'an 710024, China;
School of Materials Science and Engineering,
Xiangtan University,
Xiangtan 411105, China
e-mail: oyxp2003@aliyun.com

1Corresponding author.

Manuscript received October 31, 2017; final manuscript received March 20, 2018; published online May 16, 2018. Assoc. Editor: Akos Horvath.

ASME J of Nuclear Rad Sci 4(3), 034503 (May 16, 2018) (5 pages) Paper No: NERS-17-1278; doi: 10.1115/1.4039885 History: Received October 31, 2017; Revised March 20, 2018

Uranium dioxide (UO2) is the typical fuel that is used in the current nuclear power plant; fission gas atoms are produced during and after the nuclear reactor operation; the fission gas atoms have a significant effect on the performance of UO2 fuel in the nuclear reactor. In this paper, we investigated the diffusion of the fission gas atoms in the UO2 fuel by using the first-principles calculation method based on the density functional theory (DFT). The results indicate that the volume of the UO2 cell increased when there is a fission gas atom enters in the UO2 supercell; the elastic properties of UO2 are in good agreement with other simulation results and experimental data and the fission gas atoms make the ductility of UO2 decreased; the fission gas atoms prefer to occupy the octahedral interstitial site (OIS) over the uranium vacancy site and the oxygen vacancy site, and the oxygen vacancy site is the most difficult occupied site due to the formation of an oxygen vacancy is more difficult than that of the uranium vacancy; the diffusion barrier of a He atom in the UO2 supercell is higher than that of an oxygen atom, that means that the diffusion of the He atom in UO2 fuel is weaker than that of the oxygen atom. Our works may shed some light on the formation mechanism of the bubbles caused by the fission gas atoms in the UO2 fuel.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Watanabe, T. , Sinnott, S. B. , Tulenko, J. S. , Grimes, R. W. , Schelling, P. K. , and Phillpot, S. R. , 2008, “ Thermal Transport Properties of Uranium Dioxide by Molecular Dynamics Simulations,” J. Nucl. Mater., 375(3), pp. 388–396. [CrossRef]
Yun, Y. , Legut, D. , and Oppeneer, P. M. , 2011, “ Phonon Spectrum, Thermal Expansion and Heat Capacity of UO2 From First-Principles,” J. Nucl. Mater., 426(1–3), pp. 109–114.
Wang, B. T. , Zhang, P. , Lizárraga, R. , Marco, I. D. , and Eriksson, O. , 2012, “ Phonon Spectrum, Thermodynamic Properties, and Pressure-Temperature Phase Diagram of Uranium Dioxide,” Phys. Rev. B, 88(10), pp. 3169–3182.
Wang, B. T. , Zheng, J. J. , Qu, X. , Li, W. D. , and Zhang, P. , 2015, “ Thermal Conductivity of UO2 and PuO2 From First-Principles,” J. Alloys Compd., 628, pp. 267–271. [CrossRef]
Sanati, M. , Albers, R. C. , Lookman, T. , and Saxena, A. , 2011, “ Elastic Constants, Phonon Density of States, and Thermal Properties of UO2,” Phys. Rev. B, 84(1), pp. 1651–1659. [CrossRef]
Devey, A. J. , 2011, “ First Principles Calculation of the Elastic Constants and Phonon Modes of UO2 Using GGA + U With Orbital Occupancy Control,” J. Nucl. Mater., 412(3), pp. 301–307. [CrossRef]
Yun, Y. , Eriksson, O. , Oppeneer, P. M. , Kim, H. , and Park, K. , 2009, “ First-Principles Theory for Helium and Xenon Diffusion in Uranium Dioxide,” J. Nucl. Mater., 385(2), pp. 364–367. [CrossRef]
Yakub, E. , 2011, “ Helium Solubility in Uranium Dioxide From Molecular Dynamics Simulations,” J. Nucl. Mater., 414(2), pp. 83–87. [CrossRef]
Gupta, F. , Pasturel, A. , and Brillant, G. , 2010, “ Diffusion of Oxygen in Uranium Dioxide: A First-Principles Investigation,” Phys. Rev. B, 81(1), pp. 1718–1720. [CrossRef]
Crocombette, J. P. , 2012, “ First-Principles Study With Charge Effects of the Incorporation of Iodine in UO2,” J. Nucl. Mater., 429(1–3), pp. 70–77. [CrossRef]
Iwasawa, M. , Chen, Y. , Kaneta, Y. , Ohnuma, T. , Geng, H. Y. , and Kinoshita, M. , 2006, “ First-Principles Calculation of Point Defects in Uranium Dioxide,” Mater. Trans., 47(11), pp. 2651–2657. [CrossRef]
Yu, J. , Devanathan, R. , and Weber, W. J. , 2009, “ First-Principles Study of Defects and Phase Transition in UO2,” J. Phys.: Condens. Matter, 21(43), p. 435401. [CrossRef] [PubMed]
Hohenberg, P. , and Kohn, W. , 1964, “ Inhomogeneous Electron Gas,” Phys. Rev., 136(3B), p. B864. [CrossRef]
Kohn, W. , and Sham, L. J. , 1965, “ Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev., 140(4A), p. A1133. [CrossRef]
Clark, S. J. , Segall, M. D. , Pickard, C. J. , Hasnip, P. J. , Probert, M. I. , Refson, K. , and Payne, M. C. , 2005, “ First Principles Methods Using CASTEP,” Z. Kristallogr.: Cryst. Mater., 220(5/6), pp. 567–570. [CrossRef]
Becke, A. D. , 1993, “ A New Mixing of Hartree-Fock and Local Density-Functional Theories,” J. Chem. Phys., 98(2), pp. 1372–1377. [CrossRef]
Perdew, J. P. , and Yue, W. , 1986, “ Accurate and Simple Density Functional for the Electronic Exchange Energy: Generalized Gradient Approximation,” Phys. Rev. B, 33(12), p. 8800. [CrossRef]
Perdew, J. P. , Chevary, J. , Vosko, S. , Jackson, K. A. , Pederson, M. R. , Singh, D. , and Fiolhais, C. , 1992, “ Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation,” Phys. Rev. B, 46(11), p. 6671. [CrossRef]
Perdew, J. P. , Burke, K. , and Ernzerhof, M. , 1996, “ Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., 77(18), p. 3865. [CrossRef] [PubMed]
Iikura, H. , Tsuneda, T. , Yanai, T. , and Hirao, K. , 2001, “ A Long-Range Correction Scheme for Generalized-Gradient-Approximation Exchange Functionals,” J. Chem. Phys., 115(8), pp. 3540–3544. [CrossRef]
Dorado, B. , Jomard, G. , Freyss, M. , and Bertolus, M. , 2010, “ Stability of Oxygen Point Defects in UO2 by First-Principles DFT+U Calculations: Occupation Matrix Control and Jahn-Teller Distortion,” Phys. Rev. B, 82(3), p. 035114. [CrossRef]
Padel, A. , and Novion, C. D. , 1969, “ Constantes Elastiques Des Carbures, Nitrures Et Oxydes D'uranium Et De Plutonium,” J. Nucl. Mater., 33(1), pp. 40–51. [CrossRef]
Fan, H. , Wang, S. S. , and Li, Y. H. , 2014, “ Study on the Electronic Structure and Elastic Constants of Uranium Dioxide by First Principles,” Acta Phys. Sin., 64(9), p. 097101. http://wulixb.iphy.ac.cn/CN/10.7498/aps.64.097101
Schoenes, J. , 1979, “ Optical Properties and Electronic Structure of UO2,” Solid State Commun., 32(10), pp. 873–877. [CrossRef]
Fritz, I. J. , 1976, “ Elastic Properties of UO2 at High Pressure,” J. Appl. Phys., 47(10), pp. 4353–4358. [CrossRef]
Thompson, A. E. , and Wolverton, C. , 2011, “ First-Principles Study of Noble Gas Impurities and Defects in UO2,” Phys. Rev. B, 84(13), p. 134111. [CrossRef]
Dorado, B. , Garcia, P. , Carlot, G. , Davoisne, C. , Fraczkiewicz, M. , Pasquet, B. , Freyss, M. , Valot, C. , Baldinozzi, G. , and Siméone, D. , 2011, “ First-Principles Calculation and Experimental Study of Oxygen Diffusion in Uranium Dioxide,” Phys. Rev. B, 83(3), p. 035126. [CrossRef]
Dorado, B. , Andersson, D. A. , Stanek, C. R. , Bertolus, M. , Uberuaga, B. P. , Martin, G. , Freyss, M. , and Garcia, P. , 2012, “ First-Principles Calculations of Uranium Diffusion in Uranium Dioxide,” Phys. Rev. B, 86(3), p. 035110. [CrossRef]
Roudil, D. , Deschanels, X. , Trocellier, P. , Jégou, C. , Peuget, S. , and Bart, J. M. , 2004, “ Helium Thermal Diffusion in a Uranium Dioxide Matrix,” J. Nucl. Mater., 327(2–3), pp. 226–226. [CrossRef]

Figures

Grahic Jump Location
Fig. 3

The formation energies of different fission gas atoms in the UO2 supercell: (a) the results obtained by the LDA method, and (b) the results obtained by the GGA method

Grahic Jump Location
Fig. 2

The lattice constant of a UO2 cell with a fission gas atom, and the fission gas atom at the different sites in the UO2 cell. (a) The results get by the LDA method and (b) the results get by the GGA method.

Grahic Jump Location
Fig. 1

Calculation models: (a) the unit cell of UO2, (b) a fission gas atom at the OIS, (c) a uranium atom is replaced by a fission atom, and (d) an oxygen atom is replaced by a fission gas atom

Grahic Jump Location
Fig. 4

The diffusion barrier of an interstitial O, U, He, Br, Kr, I, and Xe atoms in UO2 from an OIS site to the nearest OIS site

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In