0
Special Section on Research Center Řež: Nuclear-Engineering Activities in 2018

Development of Experimental Instrumentation for Measurement of Advection in Narrow Aperture in Granite Block

[+] Author and Article Information
Jaroslav Kotowsk

Nuclear Fuel Cycle,
Research Centre Řež,
Husinec 25068, Řež, Czech Republic
e-mail: jaroslav.kotowski@cvrez.cz

Tomáš Černoušek

Nuclear Fuel Cycle,
Research Centre Řež,
Husinec 25068, Řež, Czech Republic
e-mail: tomas.cernousek@cvrez.cz

Filip Jankovský

Fuel Cycle Chemistry Department,
ÚJV Řež,
Husinec 25068, Řež,
Czech Republic
e-mail: filip.jankovsky@ujv.cz

Pavel Kůs

Nuclear Fuel Cycle,
Research Centre Řež,
Husinec 25068, Řež, Czech Republic
e-mail: pavel.kus@cvrez.cz

Petr Polívka

Nuclear Fuel Cycle,
Research Centre Řež,
Husinec 25068, Řež,
Czech Republic
e-mail: petr.polivka@cvrez.cz

Martin Skala

Nuclear Fuel Cycle,
Research Centre Řež,
Husinec 25068, Řež,
Czech Republic
e-mail: martin.skala@cvrez.cz

Hana Kovářová

Nuclear Fuel Cycle,
Research Centre Řež,
Husinec 25068, Řež,
Czech Republic
e-mail: hana.kovarova@cvrez.cz

Milan Zuna

Fuel Cycle Chemistry Department,
ÚJV Řež,
Husinec 25068, Řež, Czech Republic
e-mail: milan.zuna@ujv.cz

1Corresponding author.

Manuscript received May 22, 2018; final manuscript received October 8, 2018; published online April 16, 2019. Assoc. Editor: Michal Kostal.

ASME J of Nuclear Rad Sci 5(3), 030904 (Apr 16, 2019) (4 pages) Paper No: NERS-18-1032; doi: 10.1115/1.4041790 History: Received May 22, 2018; Revised October 08, 2018

A granite block, acquired from a quarry Panská Dubenka located in the Czech Republic and used in presented experiments, is part of the same bedrock that can be potentially used for a deep geological repository. It is important to characterize advection in fractured rock to assess possible groundwater contamination. Newly used method—three-dimensional scanning using Hexagon Romer Arm was implemented to characterize the morphology of an examined fractured block with a aperture. The scanning technology provides the possibility to digitalize the rock surface. The scanning can be also used to determine any changes in the rock surface. The block was instrumented by tubing, and the aperture was sealed using a silicone. Flow paths were investigated by the comparison of fluid weights on the outlet on every output/site. The Hexagon Romer Arm is an ideal tool for the precise determination of a aperture's width in its full volume.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Zuna, K. , Havlová, M. , Trpkošová, V. , Baratová, D. , Gvoždík, D. , Sosna, L. , Smutek, K. , Staš, J. , and Souček, L. , 2017, “ Radionuclide Migration From a Fracture Toward a Granite Matrix at the Josef Underground Laboratory,” Procedia Eng., 191, pp. 1056–1067. [CrossRef]
Paillet, F. L. , Williams, J. H. , Urik, J. , Lukes, J. , Kobr, M. , and Mares, S. , 2012, “ Cross-Borehole Flow Analysis to Characterize Fracture Connections in the Melechov Granite, Bohemian-Moravian Highland, Czech Republic,” Hydrogeol. J., 20(1), pp. 143–154. [CrossRef]
Wang, T. H. , Li, M. H. , and Teng, S. P. , 2009, “ Bridging the Gap Between Batch and Column Experiments: A Case Study of Cs Adsorption on Granite,” J. Hazard. Mater., 161(1), pp. 409–415. [CrossRef] [PubMed]
Develi, K. , and Tayfun, B. , 2015, “ Experimental and Visual Analysis of Single-Phase Flow Through Rough Fracture Replicas,” Int. J. Rock Mech. Min. Sci., 73, pp. 139–155. [CrossRef]
Ju, Y. , Zhang, Q. , Yang, Y. , Xie, H. , Gao, F. , and Wang, H. , 2013, “ An Experimental Investigation on the Mechanism of Fluid Flow Through Single Rough Fracture of Rock,” Sci. China Technol. Sci., 56(8), pp. 2070–2080. [CrossRef]
Singh, K. K. , Singh, D. N. , and Ranjith, P. G. , 2015, “ Laboratory Simulation of Flow Through Single Fractured Granite,” Rock Mech. Rock Eng., 48(3), pp. 987–1000. [CrossRef]
Hoeltta, P. , Hakanen, M. , Poteri, A. , and Hautojarvi, A. , 2004, “ Fracture Flow and Radionuclide Transport in Block-Scale Laboratory Experiments,” Radiochim. Acta, 92(9–11), pp. 775–779.
Vandergraaf, T. T. , Drew, D. J. , and Masuda, S. , 1996, “ Radionuclide Migration Experiments in a Natural Fracture in a Quarried Block of Granite,” J. Contam. Hydrol., 21(1–4), pp. 153–164. [CrossRef]
Bodin, J. , Ackererb, P. , Boissonc, A. , Bourbiauxd, B. , BeueleJean-Raynald de Dreuzyc, D. , Delayb, F. , Porela, G. , and Pourpak, H. , 2012, “ Predictive Modelling of Hydraulic Head Responses to Dipole Flow Experiments in a Fractured/Karstified Limestone Aquifer: Insights From a Comparison of Five Modelling Approaches to Real-Field Experiments,” J. Hydrol., 454–455, pp. 82–100. [CrossRef]
ITRC, 2017, “ Characterization and Remediation of Fractured Rock, FracRx-1,” Interstate Technology and Regulatory Council, Fractured Rock Team, Washington, DC, accessed Sept. 25, 2018, https://fracturedrx-1.itrcweb.org/
Ben Abdelghani, F. , Aubertin, M. , Simon, R. , and Therrien, R. , 2015, “ Numerical Simulations of Water Flow and Contaminants Transport Near Mining Wastes Disposed in a Fractured Rock Mass,” Int. J. Min. Sci. Technol., 25(1), pp. 37–45. [CrossRef]
Lange, K. , and Van Geel, P. J. , 2011, “ Physical and Numerical Modelling of a Dual-Porosity Fractured Rock Surrounding an in-Pit Uranium Tailings Management Facility,” Can. Geotech. J., 48(3), pp. 365–374. [CrossRef]
Ramonu, O. J. , and Alagbe, A. A. , 2018, “ Numerical Simulation of Contaminant Transport in Oil Contaminated Soil,” FUW Trends Sci. Technol. J., 3(1), pp. 282–286. http://www.ftstjournal.com/uploads/docs/31%20Article%2053.pdf
Záruba, J. , Sosna, K. , and Najsner, J. , 2012, “ Research Into Rock Mass Properties for Design and Constructing Undergrounds Repositories,” Tunel, 4, pp. 25–33.
Hanák, J. , Breiter, K. , Rukavičková, L. , Chlupáčová, M. , Ondra, P. , Sosna, K. , Novák, P. , Havlová, V. , Nováková, L. , and Večerník, P. , 2010, “ Výzkum Vlivu Mezizrnné Propustnosti Granitů na Bezpečnost Hlubinného Ukládání Do Geologických Formací a Vývoj Metodiky a Měřící Aparatury,” Etapová Zpráva o Řešení Proj. v Roce, pp. 12–15.

Figures

Grahic Jump Location
Fig. 1

Left: an apparatus scheme composing of pump connected to T-part and 1B inlet of the block; right: the photography of the apparatus prepared for an advection experiment corresponds with the apparatus scheme

Grahic Jump Location
Fig. 2

(a) The three-dimensional model of one block part, (b) a height map-distance between block parts, and (c) surface of one block part with highlighted differences caused by abrasion

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In