0
Special Section on Research Center Řež: Nuclear-Engineering Activities in 2018

Estimation of Tritium and Dust Source Term in European DEMOnstration Fusion Reactor During Accident Scenarios

[+] Author and Article Information
Guido Mazzini

Centrum Vyzkumu Rez (CVRez),
Hlavní 130,
Husinec–Řež 250 68, Czech Republic
e-mail: guido.mazzini@cvrez.cz

Tadas Kaliatka

Lithuanian Energy Institute,
Breslaujos g. 3,
Kaunas 44403, Lithuania

Maria Teresa Porfiri

Agenzia nazionale per le nuove tecnologie,
l'energia e lo sviluppo economico sostenibile
(ENEA) UTFUS-TECN,
Via Enrico Fermi, 45,
Frascati, Roma 00044, Italy

Manuscript received October 10, 2018; final manuscript received March 29, 2019; published online May 29, 2019. Assoc. Editor: Martin Schulc.

ASME J of Nuclear Rad Sci 5(3), 030916 (May 29, 2019) (7 pages) Paper No: NERS-18-1100; doi: 10.1115/1.4043379 History: Received October 10, 2018; Revised March 29, 2019

The safety features of the future nuclear fusion reactors are one of the key issues for their attractiveness if compared with the fission plants. In fusion devices, accidents with high release of radioactive materials have low probabilities because the most part of abnormal transients lead to passive plasma shutdown. It does not mean that radiological source terms such tritium and activated dust are not generated and released, but their inventory does not increase during abnormal events. Therefore, the source term inventory has to be assessed during normal operation and traced when accidents occur. For this reason, a study for qualification and quantification of the tritium and dust source term (DTS) was established with the aim to understand their production, deposition, and penetration in the vacuum vessel (VV) and in the breeding blanket (BB). The main concern is source term release during the main accident scenarios to comply with a future licensing process. In case of abnormal event scenarios, the source term inventory involved in the release changes and requires a different confinement approach and mitigation. For the estimation of the source term in the DEMOnstration Fusion Power Station (DEMO), a methodology was developed. The methodology scales the tritium and DTS inside the VV from the International Thermonuclear Experimental Reactor, the European Power Plant Conceptual Study, and reports the tritium generated inside the breeder blanket from data quantified in other studies for DEMO. In this article, the methodology was updated and tritium and DTS for DEMO 2016 design were estimated. Moreover, the tritium and dust release pathways were highlighted according to different accidental scenarios. These results were obtained for all blanket concepts, which are analyzing in the ongoing DEMO EUROFusion project. The values estimated in this article will be used in the safety analyses to evaluate releases or to quantify the operational limits starting from values postulated in International Thermonuclear Experimental Reactor.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Mazzini, G. , Kaliatka, T. , Porfiri, M. T. , Poggi, L. A. , Malizia, A. , and Gaudio, P. , 2017, “ Methodology of the Source Term Estimation for DEMO Reactor,” Fusion Eng. Des., 124, pp. 1199–1202.
Shimada, M. , Pitts, R. A. , Ciattaglia, S. , Carpentier, S. , Choi, C. H. , Dell Orco, G. , Hirai, T. , Kukushkin, A. , Lisgo, S. , Palmer, J. , Shu, W. , and Veshchev, E. , 2013, “ In-Vessel Dust and Tritium Control Strategy in ITER,” J. Nucl. Mater., 438(Suppl.), pp. S996–S1000.
Federici, G. , Biel, W. , Gilbert, M. R. , Kemp, R. , Taylor, N. , and Wenninger, R. , 2017, “ European DEMO Design Strategy and Consequences for Materials,” Nucl. Fusion, 57(9), p. 092002.
ITER, 2018, “ ITER Organization,” ITER, Cadarace, France, accessed Apr. 13, 2019, https://www.iter.org/
Maisonnier, D. , Cook, I. , Sardain, P. , Andreani, R. , Di Pace, L. , Forrest, R. , Giancarli, L. , Hermsmeyer, S. , Norajitra, P. , Taylor, N. , and Ward, D. , 2005, “ A Conceptual Study of Commercial Fusion Power Plant (PPCS),” European Fusion Development Agreement (EFDA), Report No. EFDA-RP-RE-5.0.
Jin, X. Z. , Carloni, D. , Boccaccini, L. V. , Stieglitz, R. , Pinna, T. , and Dongiovanni, D. , 2015, “ Preliminary Safety Studies for the DEMO HCPB Blanket Concept,” Fusion Eng. Des., 98–99, pp. 2157–2161.
Candido, L. , Utili, M. , Nicolotti, I. , and Zucchetti, M. , 2016, “ Tritium Transport in HCLL and WCLL DEMO Blankets,” Fusion Eng. Des., 109–111(Part A), pp. 248–254.
Urgorri, F. R. , 2015, “ Preliminary System Modelling for WCLL,” Fusion Sci. Technol., 71, pp. 444–449.
Demange, D. , Antunes, R. , Borisevich, O. , Frances, L. , Rapisarda, D. , Santucci, A. , and Utili, M. , 2016, “ Tritium Extraction Technologies and DEMO Requirements,” Fusion Eng. Des., 109–111(633053), pp. 912–916. [CrossRef]
Urgorri, F. R. , Moreno, C. , Carella, E. , Rapisarda, D. , Fernández-Berceruelo, I. , Palermo, I. , and Ibarra, A. , 2017, “ Tritium Transport Modeling at System Level for the EUROfusion Dual Coolant Lithium-Lead Breeding Blanket,” Nucl. Fusion, 57(11), p. 116045.
Donné, T. , and Federici, G. , 2015, “ Overview of Design and R&D Activities Towards a European DEMO,” 12th International Symposium on Fusion Nuclear Technology (ISFNT), Jeju Island, South Korea, Sept. 14–18, Paper No. EUROFUSION CP(15)06/40.
Pinna, T. , Carloni, D. , Carpignano, A. , Ciattaglia, S. , Johnston, J. , Porfiri, M. T. , Savoldi, L. , Taylor, N. , Sobrero, G. , Uggenti, A. C. , Vaisnoras, M. , and Zanino, R. , 2017, “ Identification of Accident Sequences for the DEMO Plant,” Fusion Eng. Des., 124, pp. 1277–1280.
European Nuclear Society, 2018, “ Nuclear Power Plants, World-Wide,” European Nuclear Society, Brussels, Belgium, accessed Dec. 21, 2018, http://www.euronuclear.org/info/encyclopedia/n/nuclear-power-plant-world-wide.htm
Thomson, G. P. , and Blackman, M. , 1959, “ Improvements in or Relating to Gas Discharge Apparatus for Producing Thermonuclear Reactions,” U.S. Department of Energy Office of Scientific and Technical Information, UK, Report No. GB 817681.
EPRI, 2012, “ Program on Technology Innovation: Assessment of Fusion Energy Options for Commercial Electricity Production,” EPRI, Palo Alto, CA, Final Report No. 1025636.
Fusion for Energy, 2018, “ Demonstration Power Plants (DEMO),” Fusion for Energy, Garching bei München, Germany, accessed Apr. 13, 2019, https://f4e.europa.eu/understandingfusion/demo.aspx.
Cismondi, F. , Boccaccini, L. V. , Aiello, G. , Aubert, J. , Bachmann, C. , Barrett, T. , Barucca, L. , Bubelis, E. , Ciattaglia, S. , Del Nevo, A. , Diegele, E. , Gasparotto, M. , Di Gironimo, G. , Di Maio, P. A. , Hernandez, F. , Federici, G. , Fernández-Berceruelo, I. , Franke, T. , Froio, A. , Gliss, C. , Keep, J. , Loving, A. , Martelli, E. , Maviglia, F. , Moscato, I. , Mozzillo, R. , Poitevin, Y. , Rapisarda, D. , Savoldi, L. , Tarallo, A. , Utili, M. , Vala, L. , Veres, G. , and Zanino, R. , 2018, “ Progress in EU Breeding Blanket Design and Integration,” Fusion Eng. Des., 136(Part A), pp. 782–792.
EUROfusion, 2019, “ European Consortium for the Development of Fusion Energy (EUROfusion) Project,” EUROfusion, Karlsruhe, Germany, accessed Apr. 13, 2019, https://www.inr.kit.edu/english/594.php.
Boccaccini, L. V. , Aiello, G. , Aubert, J. , Bachmann, C. , Barrett, T. , Del Nevo, A. , Demange, D. , Forest, L. , Hernandez, F. , Norajitra, P. , Porempovic, G. , Rapisarda, D. , Sardain, P. , Utili, M. , and Vala, L. , 2016, “ Objectives and Status of EUROfusion DEMO Blanket Studies,” Fusion Eng. Des., 109–111(Part B), pp. 1199–1206.
Loarte, A. , Saibene, G. , Sartori, R. , Eich, T. , Kallenbach, A. , Suttrop, W. , Kempenaars, M. , Beurskens, M. , de Baar, M. , Lönnroth, J. , Lomas, P. J. , Matthews, G. , Fundamenski, W. , Parail, V. , Becoulet, M. , Monier-Garbet, P. , de la Luna, E. , Gonçalves, B. , Silva, C. , and Corre, Y. , 2004, “ Characterization of Pedestal Parameters and Edge Localized Mode Energy Losses in the Joint European Torus and Predictions for the International Thermonuclear Experimental Reactor,” Phys. Plasmas, 11(5), pp. 2668–2678. [CrossRef]
Boccaccini, L. V. , Aiello, G. , Del Nevo, A. , Norajitra, P. , Rapisarda, D. , and Bachmann, C. , 2014, “ European DEMO Breeding Blanket Design and Development Strategy in a Roadmap to the Realisation of Fusion Energy,” Fusion Energy Conference (FEC 2014), Saint Petersburg, Russia, Oct. 13–18, Paper No. 46091.
Gauntt, R. O. , Cole, R. K. , Erickson, C. M. , Gido, R. G. , Gasser, R. D. , Rodriguez, S. B. , and Young, M. F. , 2005, “ MELCOR Computer Code Manuals Version 1.8.6,” Sandia National Laboratories, Albuquerque, NM.
Merrill, B. J. , 2011, “ Aerosol Resuspension Model for MELCOR for Fusion and Very High Temperature Reactor Applications,” Idaho National Laboratory Next Generation Nuclear Plant Project, Idaho Falls, ID.
Skinner, C. H. , Haasz, A. A. , Alimov, V. K. , Bekris, N. , Causey, R. A. , Clark, R. E. H. , Coad, J. P. , Davis, J. W. , Doerner, R. P. , Mayer, M. , Pisarev, A. , Roth, J. , and Tanabe, T. , 2008, “ Recent Advances on Hydrogen Retention in Iter's Plasma-Facing Materials: Beryllium, Carbon. And Tungsten,” Fusion Sci. Technol., 54(4), pp. 891–945. [CrossRef]
Ciattaglia, S. , 2011, “ Strategy and Plan for in-Vacuum Vessel Dust (and Tritium Retention) Control in ITER. Status November 2011,” Second RCM of IAEA Dust CRP, Vienna, Austria, Oct. 16–20, Paper No. L5-RC-55758.
Federici, G. , Bachmann, C. , Biel, W. , Boccaccini, L. , Cismondi, F. , Ciattaglia, S. , Coleman, M. , Day, C. , Diegele, E. , Franke, T. , Grattarola, M. , Hurzlmeier, H. , Ibarra, A. , Loving, A. , Maviglia, F. , Meszaros, B. , Morlock, C. , Rieth, M. , Shannon, M. , Taylor, N. , Tran, M. Q. , You, J. H. , Wenninger, R. , and Zani, L. , 2016, “ Overview of the Design Approach and Prioritization of R&D Activities Towards an EU DEMO,” Fusion Eng. Des., 109–111(Part B), pp. 1464–1474.
Tanabe, T. , 2017, Tritium: Fuel of Fusion Reactors, Springer, New York.
Humphreys, D. A. , 2010, “ High Reliability Operation and Disruption Control in Tokamaks,” Fusion Sci. Technol., 59(3), pp. 619–620. [CrossRef]
Widdowson, A. , Alves, E. , Baron-Wiechec, A. , Barradas, N. P. , Catarino, N. , Coad, J. P. , Corregidor, V. , Garcia-Carrasco, A. , Heinola, K. , Koivuranta, S. , Krat, S. , Lahtinen, A. , Likonen, J. , Mayer, M. , Petersson, P. , Rubel, M. , and Van Boxel, S. , 2017, “ Overview of the JET ITER-Like Wall Divertor,” Nucl. Mater. Energy, 12, pp. 499–505.
Santucci, A. , 2018, “ Status of CPS Activities—TFV Project,” KDI2 Meeting, Garching bei München, Germany.

Figures

Grahic Jump Location
Fig. 1

Simplified scheme of DEMO fusion power plant

Grahic Jump Location
Fig. 2

Schematics of DEMO (a) HCPB, (b) HCLL, (c) WCLL, and (d) DCLL [21] (Reproduced courtesy of L.V. Boccaccini)

Grahic Jump Location
Fig. 3

Schematic of the developed methodology

Grahic Jump Location
Fig. 4

Scanning electron microscope image showing layered deposit and metallic droplet encapsulated with over laying deposit [29]

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In