0
Technical Brief

Gamma and X-Ray Shielding Properties of Various Types of Steels

[+] Author and Article Information
H. C. Manjunatha

Department of Physics,
Government College for Women,
Kolar, Karnataka 563101, India
e-mail: manjunathhc@rediffmail.com

L. Seenappa

Department of Physics,
Government College for Women,
Kolar, Karnataka 563101, India;
Research and Development Centre,
Bharathiar University,
Coimbatore 641046, India
e-mail: seenappakolar@gmail.com

1Corresponding author.

Manuscript received November 12, 2018; final manuscript received May 12, 2019; published online August 2, 2019. Assoc. Editor: Ilan Yaar.

ASME J of Nuclear Rad Sci 5(4), 044501 (Aug 02, 2019) (7 pages) Paper No: NERS-18-1113; doi: 10.1115/1.4043814 History: Received November 12, 2018; Revised May 12, 2019

We have calculated the gamma and X-ray shielding parameters such as mass attenuation coefficient, half value layer (HVL), tenth value layer (TVL), specific gamma ray constant, effective atomic number, and buildup factors in various steels. By studying these X-ray and gamma interaction parameters, we have selected the best steel which can be used for the X-ray and gamma shielding material. The steel type 20Mo-4 is having higher values of mass attenuation coefficient, specific gamma ray constant, effective atomic number, and buildup factor and smaller values of HVL and TVL. A detail analysis of X-ray/gamma interaction in the different steels reveals that the steel type (S15) 20Mo-4 is good absorption of both X-ray/gamma radiations.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Akkurt, I. , 2009, “ Effective Atomic and Electron Numbers of Some Steels at Different Energies,” Ann. Nucl. Energy, 36(11–12), pp. 1702–1705. [CrossRef]
Singh, V. P. , and Badiger, N. M. , 2013, “ Study of Mass Attenuation Coefficients, Effective Atomic Numbers and Electron Densities of Carbon Steel and Stainless Steels,” Radioprotection, 48, pp. 431–443. [CrossRef]
Singh, V. P. , Medhat, M. E. , and Shirmardi, S. P. , 2015, “ Comparative Studies on Shielding Properties of Some Steel Steels Using Geant4, MCNP, WinXCOM and Experimental Results,” Radiat. Phys. Chem., 106, pp. 255–260. [CrossRef]
Medhat, M. E. , and Wang, Y. , 2015, “ Investigation on Radiation Shielding Parameters of Oxide Dispersion Strengthened Steels Used in High Temperature Nuclear Reactor Applications,” Ann. Nucl. Energy, 80, pp. 365–370. [CrossRef]
Eissa, M. M. , El-Kameesy, S. U. , El-Fiki, S. A. , Ghali, S. N. , El Shazly, R. M. , and Saeed, A. , 2016, “ Attenuation Capability of Low Activation-Modified High Manganese Austenitic Stainless Steel for Fusion Reactor System,” Fusion Eng. Des., 112, pp. 130–135. [CrossRef]
Manjunatha, H. C. , 2015, “ Influence of Gamma Irradiation on Conductivity of YBa2Cu3O7,” Radiat. Phys. Chem., 113, pp. 24–27. [CrossRef]
Seenappa, L. , Manjunatha, H. C. , Chandrika, B. M. , and Chikka, H. , 2017, “ A Study of Shielding Properties of X-Ray and Gamma in Barium Compounds,” J. Radiat. Prot. Res., 42(1), pp. 26–32. [CrossRef]
Manjunatha, H. C. , 2017, “ A Study of Gamma Attenuation Parameters in Poly Methyl Methacrylate and Kapton,” Radiat. Phys. Chem., 137, pp. 254–259. [CrossRef]
Manjunatha, H. C. , Seenappa, L. , Chandrika, B. M. , and Hanumantharayappa, C. , 2017, “ A Study of Photon Interaction Parameters in Barium Compounds,” Ann. Nucl. Energy, 109, pp. 310–317. [CrossRef]
Rudraswamy, B. , Dhananjaya, N. , and Manjunatha, H. C. , 2010, “ Measurement of Absorbed Dose Rate of Gamma Radiation for Lead Compounds,” Nucl. Instrum. Methods Phys. Res., Sect. A., 619(1–3), pp. 171–173. [CrossRef]
Manjunatha, H. C. , Chandrika, B. M. , Seenappa, L. , and Hanumantharayappa, C. , 2016, “ Study of Gamma Attenuation Properties of Tungsten Copper Steels,” Int. J. Nucl. Energy Sci. Technol., 10(4), pp. 356–368. [CrossRef]
Manjunatha, H. C. , and Rudraswamy, B. , 2013, “ Study of Effective Atomic Number and Elect Ron Density for Tissues From Human Organs in the Energy Range of 1 keV–100 GeV,” Health Phys., 104(2), pp. 158–162. [CrossRef] [PubMed]
Suresh, K. C. , Manjunatha, H. C. , and Rudraswamy, B. , 2008, “ Study of Zeff for DNA, RNA and Retina by Numerical Methods,” Radiat. Protect. Dosim., 128(3), pp. 294–298. [CrossRef]
Manjunatha, H. C. , and Rudraswamy, B. , 2011, “ Computation of CT-Number and Zeff in Teeth,” Health Phys., 100(5), pp. S92–S99. [CrossRef] [PubMed]
Manjunatha, H. C. , 2014, “ A Study of Photon Interaction Parameters in Lung Tissue Substitutes,” J. Med. Phys., 39(2), p. 112. [CrossRef] [PubMed]
Seenappa, L. , Manjunatha, H. C. , Sowmya, N. , and Sridhar, K. N. , 2018, “ A Study of Energy Absorption Buildup Factors of Some Steels,” Radiat. Prot. Environ., 41, pp. 123–127. [CrossRef]
Manjunatha, H. C. , Seenappa, L. , Sridhar, K. N. , Sowmya, N. , and Hanumantharayappa, C. , 2017, “ Photon Interaction Parameters of Different Tissues of Human Organs,” Def. Life Sci. J., 2(3), pp. 358–362. [CrossRef]
Manjunatha, H. C. , 2017, “ A Study of Gamma Dosimetric Parameters in Some Skeletal Muscle Relaxants,” Pramana-J. Phys., 89, p. 42. [CrossRef]
Seenappa, L. , Manjunatha, H. C. , Sridhar, K. N. , and Hanumantharayappa, C. , 2017, “ Semi Empirical Formula for Exposure Buildup Factors,” Radiat. Eff. Defects Solids, 172(9–10), pp. 790–798. [CrossRef]
Manjunatha, H. C. , Seenappa, L. , Sowmya, N. , and Hanumantharayappa, C. , 2018, “ Study of Gamma/X-Ray Interaction in Kondo Insulators,” X-Ray Spectrom., 47, pp. 34–45. [CrossRef]
Manjunatha, H. C. , and Sridhar, K. N. , 2018, “ A Simple Empirical Formula for Neutron Scattering Lengths and Cross Sections,” Nucl. Instrum. Methods Phys. Res., Sect. A, 877, pp. 349–354. [CrossRef]
Seenappa, L. , Manjunatha, H. C. , Sridhar, K. N. , and Hanumantharayappa, C. , 2018, “ Gamma and X-Ray Radiation Compatibility of Ti-Ta-Hf-Zr Steels Used for Coronary Stent Applications,” Nucl. Sci. Technol., 29, p. 3. [CrossRef]
Seenappa, L. , Manjunatha, H. C. , Sridhar, K. N. , and Hanumantharayappa, C. , 2018, “ Gamma, X-Ray and Neutron Shielding Properties of Polymer Concretes,” Indian J. Pure Appl. Phys., 56(5), pp. 383–391. http://op.niscair.res.in/index.php/IJPAP/article/view/18219
Seenappa, L. , Manjunatha, H. C. , Sridhar, K. N. , and Hanumantharayappa, C. , 2017, “ Study of Gamma/X-Ray Interaction in Some Diodes and Transistors,” Int. J. Nucl. Energy Sci. Technol., 11(4), pp. 377–389. [CrossRef]
Manjunatha, H. C. , Chandrika, B. M. , Rudraswamy, B. , and Sankarshan, B. M. , 2012, “ Beta Bremsstrahlung Dose in Concrete Shielding,” Nucl. Instrum. Methods Phys. Res., Sect. A, 674, pp. 74–78. [CrossRef]
Manjunatha, H. C. , and Rudraswamy, B. , 2012, “ Energy Absorption and Exposure Build-Up Factors in Hydroxyapatite,” Radiat. Meas., 47(5), pp. 364–370. [CrossRef]
Manjunatha, H. C. , and Rudraswamy, B. , 2011, “ Computation of Exposure Build-Up Factors in Teeth,” Radiat. Phys. Chem., 80(1), pp. 4–21. [CrossRef]
Manjunatha, H. C. , and Rudraswamy, B. , 2012, “ Energy Absorption Build-Up Factors in Teeth,” J. Radioanal. Nucl. Chem., 294(2), pp. 251–260. [CrossRef]
Singh, R. , Singh, S. , Singh, G. , and Thind, K. S. , 2017, “ Gamma Radiation Shielding Properties of Steel and Iron Slags,” New J. Glass Ceram., 7(1), pp. 1–11. [CrossRef]
Calik, A. , Akbunar, S. , Ucar, N. , Yilmaz, N. , Karakas, S. , and Akkurt, I. , 2014, “ A Comparison of Radiation Shielding of Stainless Steel With Different Magnetic Properties,” Nucl. Technol. Radiat. Protec., 29(3), pp. 186–189. [CrossRef]
Buyuk, B. , 2015, “ Gamma Attenuation Behavior of Some Stainless and Boron Steels,” Acta Phys. Pol., A, 127(4), pp. 1342–1345. [CrossRef]
Demir, E. , Karabas, M. , Sonmez, S. , Tugrul, A. B. , Ovecoglu, M. L. , and Buyuk, B. , 2017, “ Comparison of Radiation Properties of Tungsten and Additive Metal Coatings on 321 Stainless Steel Substrate,” Acta Phys. Pol., A, 131(1), pp. 71–73. [CrossRef]
Gerward, L. , Guilbert, N. , Jensen, K. B. , and Levring, H. , 2004, “ WinXCom—A Program for Calculating X-Ray Attenuation Coefficients,” Radiat. Phys. Chem., 71(3–4), pp. 653–654. [CrossRef]
ANS, 1991, “ Gamma-Ray Attenuation Coefficients and Buildup Factor for Engineering Materials ANSI/ANS 6.4.3,” Oak Ridge National Laboratory, Oak Ridge, TN.
Manjunatha, H. C. , Seenappa, L. , Sridhar, K. N. , Sowmya, N. , and Hanumantharayappa, C. , 2017, “ Empirical Formulae for Mass Attenuation and Energy Absorption Coefficients From 1 keV to 20 MeV,” Eur. Phys. J. D, 71, p. 235. [CrossRef]
Shenoy, A. V. , Saini, D. R. , and Nadkarni, V. M. , 1984, “ Melt Rheology of Polymer Blends From Melt Flow Index,” Int. J. Polym. Mater. Polym. Biomater., 10(3), p. 213. [CrossRef]
Saini, D. R. , Shenoy, A. V. , and Nadkarni, V. M. , 1984, “ Dynamic Mechanical Properties of Highly Loaded Ferrite-Filled Thermoplastic Elastomers,” J. Appl. Polym. Sci., 29(12), p. 4123. [CrossRef]
Mcguire, M. , 2008, Stainless Steels for Design Engineers, ASM International, Materials Park, OH.
Pioro, I. , and Duffey, R. B. , 2007, Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications, ASME Press, New York, p. 334.
Pioro, I. L. , ed., 2016, Handbook of Generation IV Nuclear Reactors, Elsevier—Woodhead Publishing (WP), Duxford, UK, p. 940.
Pioro, I. , Editors: Krivit, S. B. , Lehr, J. H. , and Kingery, T. B. , 2011, “ The Potential Use of Supercritical Water-Cooling in Nuclear Reactors,” Nuclear Energy Encyclopedia: Science, Technology, and Applications, Wiley, Hoboken, NJ, pp. 309–347.
Pioro, I. , and Duffey, R. , 2015, “ Nuclear Power as a Basis for Future Electricity Generation,” ASME J. Nucl. Eng. Radiat. Sci., 1(1), p. 011001. [CrossRef]
Pioro, I. , Mokry, S. , and Draper, S. , 2011, “ Specifics of Thermophysical Properties and Forced-Convective Heat Transfer at Critical and Supercritical Pressures,” Rev. Chem. Eng., 27(3–4), pp. 191–214.
Pioro, I. , 2010, “ Heat-Transfer at Supercritical Pressures,” 14th International Heat Transfer Conference (IHTC-14), Washington, DC, Aug. 7–13, Paper No. 23403. http://digbib.ubka.uni-karlsruhe.de/volltexte/fzk/6609/6609.pdf
Hubbell, J. H. , 1982, “ Photon Mass Attenuation and Energy-Absorption Coefficients,” Int. J. Appl. Radiat. Isot., 33(11), pp. 1269–1290. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Comparison of μ/ρ among the studied steels (S1—316 LN, S2—317 L, S3—317 LM, S4—316 L, S5—317 LN, S6—XM 14, S7—XM-17, S8—XM-18, S9—Nitronic 60, S10—Nitronic 40, S11—Nitronic 40-XM-11, S12—Nitronic 33-XM-29, S13—Nitronic 32, S14—20Cb-3, S15—20Mo-4, S16—20Mo-6, S17—Sanicro 28, S18—AL-6X, S19—AL-6XN, S20—JS700, S21—1925 hMo, S22—Cronifer 1815 LCSi, S23—310MoLN, S24—254SMO, S25—654SMO, S26—Nirosta, and S27—XM-15)

Grahic Jump Location
Fig. 2

Comparison of Γ among the studied steels (S1—316 LN, S2—317 L, S3—317 LM, S4—316 L, S5—317 LN, S6—XM 14, S7—XM-17, S8—XM-18, S9—Nitronic 60, S10—Nitronic 40, S11—Nitronic 40-XM-11, S12—Nitronic 33-XM-29, S13—Nitronic 32, S14—20Cb-3, S15—20Mo-4, S16—20Mo-6, S17—Sanicro 28, S18—AL-6X, S19—AL-6XN, S20—JS700, S21—1925 hMo, S22—Cronifer 1815 LCSi, S23—310MoLN, S24—254SMO, S25—654SMO, S26—Nirosta, and S27—XM-15)

Grahic Jump Location
Fig. 3

Comparison of HVL (m) among the studied steels (S1—316 LN, S2—317 L, S3—317 LM, S4—316 L, S5—317 LN, S6—XM 14, S7—XM-17, S8—XM-18, S9—Nitronic 60, S10—Nitronic 40, S11—Nitronic 40-XM-11, S12—Nitronic 33-XM-29, S13—Nitronic 32, S14—20Cb-3, S15—20Mo-4, S16—20Mo-6, S17—Sanicro 28, S18—AL-6X, S19—AL-6XN, S20—JS700, S21—1925 hMo, S22—Cronifer 1815 LCSi, S23—310MoLN, S24—254SMO, S25—654SMO, S26—Nirosta, and S27—XM-15)

Grahic Jump Location
Fig. 4

Comparison of TVL (m) among the studied steels (S1—316 LN, S2—317 L, S3—317 LM, S4—316 L, S5—317 LN, S6—XM 14, S7—XM-17, S8—XM-18, S9—Nitronic 60, S10—Nitronic 40, S11—Nitronic 40-XM-11, S12—Nitronic 33-XM-29, S13—Nitronic 32, S14—20Cb-3, S15—20Mo-4, S16—20Mo-6, S17—Sanicro 28, S18—AL-6X, S19—AL-6XN, S20—JS700, S21—1925 hMo, S22—Cronifer 1815 LCSi, S23—310MoLN, S24—254SMO, S25—654SMO, S26—Nirosta, and S27—XM-15)

Grahic Jump Location
Fig. 5

Variation of Zeff with energy

Grahic Jump Location
Fig. 6

Comparison of Zeff among the studied steels at different energies of 10 keV, 100 keV, 1 MeV, and 10 MeV

Grahic Jump Location
Fig. 7

Variation of energy buildup factor (EBF) with energy at mean free path λ = 1, λ = 5, λ = 10, and λ = 15

Grahic Jump Location
Fig. 8

Variation of energy buildup factor (EBF) for different steels at mean free path λ = 40

Grahic Jump Location
Fig. 9

Comparison of the mechanical properties of the studied steels

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In