This study describes the thermal modeling of a novel algal biofilm photobioreactor aimed at cultivating algae for biofuel production. The thermal model is developed to assess the photo-bioreactor’s thermal profile and evaporative water loss rate for a range of environmental parameters, including relative humidity, ambient air temperature, solar irradiation, and wind speed. First, a 24 hour simulation of the system has been performed using environmental data for Memphis, TN, USA on a typical spring day to assess the diurnal variations in system performance. Then, a sensitivity analysis is performed to assess the effect of each environmental parameter on the temperature and evaporative losses of the photobioreactor. It is observed that because of the high surface area-to-volume ratio of the system, the temperature of the system exceeds that of the maximum ambient temperature during daylight hours by approximately 0.5 °C and is lower than the minimum ambient temperature at night by approximately 1.4 °C because of evaporative and radiative cooling. Furthermore, without active cooling, the characteristic evaporative water loss from the system is approximately 4.8 L/m2-day.

This content is only available via PDF.
You do not currently have access to this content.