The demand for rehabilitation robots is increasing for the upcoming aging society. Power-assisting devices are considered promising for enhancing the mobility of senior citizen and people with disability. Other potential applications are for muscle rehabilitation and sports training. Various power-assisting devices have been developed for supporting the human joint torque in factory. The main focus of our research is to propose a Pinpointed Muscle Force Control (PMFC) method to control the load of selected muscles by using power-assisting device, thus enabling pinpointed motion support, rehabilitation, and training by explicitly specifying the target muscles. In past research, we have made some achievements. However, using the past control method, all joint torque need to be controlled individually. Limited by the current technology, it is difficult to develop such power-assisting device. In this paper, we developed the muscle force control method by taking into account the control DOF of power-assisting device. Using this method, any existing power-assisting device can be used to realize PMFC, even if this device cannot control all joint torque individually. The validity of this advanced PMFC method and the effects from the control DOF are confirmed in simulation and experiments.

This content is only available via PDF.
You do not currently have access to this content.