In this study, an efficient cooling technique for concentrator photovoltaic (CPV) cells is proposed to enhance the system electrical efficiency and extend its lifetime. To do this, a comprehensive three-dimensional conjugate heat transfer model of CPV cells layers coupled with the heat transfer and fluid flow model inside jet impingement heat sink is developed. Four different jet impingement designs are compared. The investigated designs are (A) central inlet jet, (B) Hypotenuse inlet jet, (C) staggered inlet jet, and (D) conventional jet impingement design with side drainage. The effect of coolant flowrate on the CPV/T system performance is investigated. The model is numerically simulated and validated using the available experiments. The performance of CPV system is investigated at solar concentration ratios of 20 and coolant flowrate up to 6000g/min. It is found that increasing the flowrate from 60 g/min to 600 g/min decrease the maximum cell temperature by 31°C for the configuration D while increasing the flowrate from 600 g/min to 6000 g/min reduce the cell temperature by 20.2°C. It is also concluded that at a higher flowrate of 6000g/min, all the investigated configurations relatively achieve better temperature uniformity with maximum temperature differences of 0.9 °C, 2.1 °C, 3.6 °C, and 3.9 °C for configurations A, B, C, and D respectively.

This content is only available via PDF.
You do not currently have access to this content.