In the present study, the hydrodynamic characteristics of underwater propulsors have been numerically investigated using a RANS flow solver based on pseudo-compressibility. A vertex-centered finite-volume method was utilized in conjunction with 2nd-order Roe’s FDS to discretize the inviscid fluxes. The viscous fluxes were computed based on central differencing. The Spalart-Allmaras one equation model was employed for the closure of turbulence. A dual-time stepping method and the Gauss-Seidel iteration were used for unsteady time integration. An unstructured overset mesh technique was adopted to treat the relative motion between multiple bodies. Calculations were made for the DTRC4119 marine propeller at several advancing ratios. Additional calculations were also made for multiple-blade-row underwater propulsors. Reasonable agreements were obtained between the present results and the experiment for the pressure coefficients on the blade surface and the integrated blade loadings. The interaction between multiple blade rows and the thrust and torque distributions were also analyzed to investigate the performance of underwater propulsors.

This content is only available via PDF.
You do not currently have access to this content.