Simplicity, low cost and easy replacement make labyrinth seals the primary seal type in gas turbines. However, excessive leakage and potential for rotordynamic instability are well known issues. Brush seals effectively control leakage in air breathing engines, albeit only applied for relatively low-pressure differentials. Hybrid brush seals (HBS) are an alternative to resolve poor reliability resulting from bristle tip wear while also allowing for reverse rotation operation. The novel configuration incorporates pads contacting the shaft; which under rotor spinning; lift-off due to the generation of a hydrodynamic pressure. The ensuing gas film prevents intermittent contact; thus lowering the operating temperature and thermal distortions, and even eliminating bristle wear. The hybrid brush seal improves sealing, is more durable and reliable than conventional brush seals, and allows reverse shaft rotation without seal damage. The paper presents measurements of power loss and leakage in a hybrid brush seal (HBS) for increasing pressure differentials over a range of rotor speeds. The test HBS, Haynes-25 bristle pack [∼850 bristles/cm] and 45° lay angle, is 166.4 mm in diameter and integrates 20-arcuate pads connected with thin EDM-webs to the seal casing. The webs are designed with low radial stiffness to allow for rotor excursions and high axial stiffness to avoid pad pitching motions resulting from high pressure differentials across the seal. Measured drag power at low rotor speeds (< 11 m/s at 1,300 rpm) decreases as the pressure differential across the seal increases. At a fixed rotor speed, a significant drop in drag torque (and drag power) ensues as the supply pressure increases, thus demonstrating that a gas film separates the rotor from the seal pads. Additionally, the operating temperature measured at the rotor/seal interface remains approximately constant (∼24°C) during tests with shaft rotation (power loss and drag torque measurements) under pressurized conditions; indicating that the rotor and seal pads are not in contact. Flow rate measurements at room temperature (25°C) show an improved sealing ability with a leakage reduction of about 36%, when compared to a first generation shoed-brush seal (SBS). The HBS calculated effective clearance (∼50 μm) is approximately 70% smaller than the radial clearance (∼180 μm) of an ideal non contacting seal with similar rotor diameter. Improved brush seal technology will increase the efficiency of gas turbines while also aiding to improve the engine stability and to reduce vibrations.

This content is only available via PDF.
You do not currently have access to this content.