The adjoint method is attractive because of its low computational cost and high efficiency. Although it has been one of the hot issues in aerodynamic design, it is not so widely used in turbomachinery applications as it is in the aeronautical field. The purpose of this work is to apply the adjoint method to three-dimensional (3D) aerodynamic inverse design of axial turbine blades for inviscid compressible flow. The 3D continuous adjoint system of Euler equations is formulated for turbine internal flow. The 3D blade profile is parameterized with Non-uniform B-Spline patch, and the coordinates of the B-Spline control points are selected as the design variables. Characteristic analysis of adjoint equations is taken to set inlet/outlet boundary conditions. To avoid the discontinuity of boundary conditions of adjoint equations in the spanwise direction, a method for solving an ordinary differential equation is developed to smooth the residual distribution of aerodynamic parameter on blade surface. 3D adjoint equations are numerically solved by using time-marching method and finite volume method. Finally, combining the grid perturbation technique, CFD technique and quasi-Newton algorithm, the aerodynamic design approach for 3D axial turbine blades is presented and several numerical examples are demonstrated to validate this approach.
Skip Nav Destination
ASME Turbo Expo 2008: Power for Land, Sea, and Air
June 9–13, 2008
Berlin, Germany
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-4316-1
PROCEEDINGS PAPER
Three-Dimensional Aerodynamic Design of Turbine Blades Using the Adjoint Method
Yingchen Li,
Yingchen Li
Xi’an Jiaotong University, Xi’an, China
Search for other works by this author on:
Zhenping Feng
Zhenping Feng
Xi’an Jiaotong University, Xi’an, China
Search for other works by this author on:
Yingchen Li
Xi’an Jiaotong University, Xi’an, China
Zhenping Feng
Xi’an Jiaotong University, Xi’an, China
Paper No:
GT2008-51225, pp. 2611-2618; 8 pages
Published Online:
August 3, 2009
Citation
Li, Y, & Feng, Z. "Three-Dimensional Aerodynamic Design of Turbine Blades Using the Adjoint Method." Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air. Volume 6: Turbomachinery, Parts A, B, and C. Berlin, Germany. June 9–13, 2008. pp. 2611-2618. ASME. https://doi.org/10.1115/GT2008-51225
Download citation file:
19
Views
Related Proceedings Papers
Related Articles
2D Viscous Aerodynamic Shape Design Optimization for Turbine Blades Based on Adjoint Method
J. Turbomach (July,2011)
Measurements in the Transition Region of a Turbine Blade Profile Under Compressible Conditions
J. Fluids Eng (March,2005)
Advanced Aerodynamic Optimization System for Turbomachinery
J. Turbomach (April,2008)
Related Chapters
Fundamentals of Finite Element and Finite Volume Methods
Compact Heat Exchangers: Analysis, Design and Optimization using FEM and CFD Approach
Some Laws to Affect the Results in Numerical Calculus
International Conference on Advanced Computer Theory and Engineering, 4th (ICACTE 2011)
Boundary Layer Analysis
Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis