A steam control valve causes vibrations of piping when the opening is in the middle condition. For the rationalization of maintenance and management in a plant, valves should be improved, but it is difficult to understand the flow characteristics in detail experimentally because the flow around the valve has a complex 3D structure and becomes supersonic (M>1). Therefore, it is necessary to clarify the cause of vibration and to develop improvements both experimentally and through CFD (Computational Fluid Dynamics) calculation. First, small-scale air experiments are performed. In this experiment, a spike-type pressure fluctuation that rotates circumferentially is observed in a middle valve opening. This fluctuation sometimes changes its rotation direction suddenly, or sometimes stays at the same position. Because of this randomness, FFT analysis cannot reproduce this peak frequency. However, another peak caused by the 1st-mode resonance in the pipe-diameter direction can be seen. After some experiments, a high-precision 3D CFD code for compressible flow, “MATIS”, was developed. This code can calculate an unsteady 3D compressible flow steadily and accurately, with TVD scheme, LU-SGS implicit scheme and inner iterative calculation. This code also includes LES turbulence model for compressible fluid in order to reproduce turbulence flow accurately. To validate this code, first, some benchmark tests such as karman vortex calculation and the calculation of a detached shock position on a sphere are performed. After benchmark tests, CFD calculation of the valve is performed under several valve opening conditions. The mesh number is about 600 thousand and y+ is about 3. CFD results agree well with those of the experiment qualitatively and quantitatively. Therefore, the validation of MATIS is confirmed. Detailed flow characteristics around the valve in a middle valve opening are investigated. Under this condition, the jet after the throat travels the valve (named “attached flow”) and strikes the jet coming from the opposite side. This phenomenon generates a high-pressure region and a pair of vortices; this region rotates circumferentially and causes cyclic side load on the valve body. CFD calculation clarifies that a circumferentially propagating spike-type pressure fluctuation is caused by attached flow along the valve, and this is though to be the cause of vibration.
Skip Nav Destination
ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
July 11–15, 2004
Charlotte, North Carolina, USA
Conference Sponsors:
- Heat Transfer Division and Fluids Engineering Division
ISBN:
0-7918-4691-1
PROCEEDINGS PAPER
CFD Calculation and Experiments of Unsteady Flow on Control Valve
Ryo Morita,
Ryo Morita
Central Research Institute of Electric Power Industry, Tokyo, Japan
Search for other works by this author on:
Fumio Inada,
Fumio Inada
Central Research Institute of Electric Power Industry, Tokyo, Japan
Search for other works by this author on:
Yoshinobu Tsujimoto
Yoshinobu Tsujimoto
Osaka University, Osaka, Japan
Search for other works by this author on:
Ryo Morita
Central Research Institute of Electric Power Industry, Tokyo, Japan
Fumio Inada
Central Research Institute of Electric Power Industry, Tokyo, Japan
Michitsugu Mori
TEPCO
Kenichi Tezuka
TEPCO
Yoshinobu Tsujimoto
Osaka University, Osaka, Japan
Paper No:
HT-FED2004-56017, pp. 51-58; 8 pages
Published Online:
February 24, 2009
Citation
Morita, R, Inada, F, Mori, M, Tezuka, K, & Tsujimoto, Y. "CFD Calculation and Experiments of Unsteady Flow on Control Valve." Proceedings of the ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. Volume 2, Parts A and B. Charlotte, North Carolina, USA. July 11–15, 2004. pp. 51-58. ASME. https://doi.org/10.1115/HT-FED2004-56017
Download citation file:
43
Views
Related Proceedings Papers
Related Articles
A Computational Study of Torque and Forces Due to Compressible Flow on a Butterfly Valve Disk in Mid-stroke Position
J. Fluids Eng (September,2006)
Computations for Unsteady Compressible Flows in a Multistage Steam Turbine With Steam Properties at Low Load Operations
J. Eng. Gas Turbines Power (October,2011)
CFD Analysis of Compressible Flow Across a Complex Geometry Venturi
J. Fluids Eng (September,2007)
Related Chapters
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Natural Gas Transmission
Pipeline Design & Construction: A Practical Approach, Third Edition
Dynamic Behavior of Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach