We present and validate a nonlinear aero-electro-mechanical model that describes the response of a scalable self-excited wind energy harvester. Similar to music-playing harmonica that create tones via oscillations of reeds when subjected to air blow, the proposed device uses flow-induced self-excited oscillations of a piezoelectric beam embedded within a cavity to generate electric power. Specifically, when the volumetric flow rate of air past the beam exceeds a certain threshold, the energy pumped into the structure via nonlinear pressure forces offsets the intrinsic damping in the system setting the beam into self-sustained limit-cycle oscillations. The vibratory energy is then converted into electricity through principles of piezoelectricity.

This content is only available via PDF.
You do not currently have access to this content.