Growing concerns from customers and the government about product disposal highlight the necessity of improving product take-back systems to retain the embedded values in disposed products. Progress has been made towards minimizing the cost of the disassembly process. While some progress has been made in improving end-of-life (EOL) value through decision making in the early design stage, contradictive objectives make it difficult to simultaneously optimize initial sales profits and EOL value. In this paper, a mathematical model is developed to integrate end-of-life recovery value considerations with product design decisions. The improvement of component reuse value or recycling value is achieved by linking design decisions in the early design stage with end-of-life decisions in order to maximize total product value across the span of the life cycle. A matrix based representation that can group components into several end-of-life modules with similar end-of-life decisions is also presented. The results are discussed to compare different design alternatives to understand their influence on product lifecycle value. The proposed method is illustrated through an example involving cell phone product design decisions and end-of-life strategies.

This content is only available via PDF.
You do not currently have access to this content.