Flexoelectricity, the electromechanical coupling of the polarization response and strain gradient, occurs in solid crystalline dielectrics of any symmetry or asymmetric crystals. Different from the piezoelectric energy harvester, an energy harvester based on the direct flexoelectric effect is designed in this study. The energy harvester consists of an elastic ring and a flexoelectric patch laminated on its outer surface. Due to the direct flexoelectric effect, the electric energy induced by the strain gradient of the flexoelectric patch is harvested to power the electric device when the ring is subjected to mechanical excitations. Electromechanical coupling equation of the flexoelectric energy harvesting system in close-loop circuit condition is derived. In this study, dynamic response, output power across the external resistor and energy harvesting results are evaluated when the ring is excited by a harmonic point loading. The output power is a function of the external excitation frequency, the external equivalent resistance, the flexoelectric patch’s thickness and other design parameters. Case studies of those parameters for the flexoelectric energy harvester are presented to optimize the output power. Results show that the optimal excitation frequency is equal to the natural frequency for each mode, and the optimal equivalent resistance is dependent of the equivalent capacitance of the flexoelectric patch and the excitation frequency. Since the output power of the flexoelectric energy harvester is similar to that of the piezoelectric energy harvester, comparison of the two harvesters is also discussed. With all the optimal conditions discussed, it can supply a design principle in the engineering applications.

This content is only available via PDF.
You do not currently have access to this content.