The dimensional accuracy of finished ceramic components depends upon the precise control of the unfired ceramic body prior to sintering. One approach for creating precise geometries is the fugitive phase approach. In the fugitive phase approach, the fugitive phase is a sacrificial material that can be removed to form channels in the finished ceramic component. In this paper, the authors computationally examine the fugitive phase approach; in particular, the lamination step of the fugitive phase approach is modeled. In the lamination step the unfired ceramic phases are combined with the fugitive phases through the application of pressure. For this research, the unfired ceramic phase consists of tape cast mullite and the fugitive phase is paper. These phases are laminated together in a die press to form a multilayer material. The compression of the die press causes pressure gradients, viscoelastic deformation, and rebounding of the unfired ceramic phases. In addition, the die press can cause movement of the fugitive phase pieces leaving unfilled voids. Three dimensional modeling is necessary to accurately capture the movement of the fugitive phase pieces. In this work the authors examine the viscoelastic deformation of the unfired ceramic phase, movement of the fugitive phase, the creation and filling of voids, pressure gradients, and the rebounding that occurs when the unfired ceramic body is removed from the die press. The information obtained from computational simulations will be used to help direct experimental investigations of the fugitive phase approach for fabrication of complex ceramic components.

This content is only available via PDF.
You do not currently have access to this content.