The objects in the Internet of Things (IoT) form a virtual space of information gathering and sharing through the networks. Designing IoT-compatible products that have the capabilities of data collection, processing, and communication requires open and resilient architecture with flexibility and adapability for dynamically evolving networks. Design for connectivity becomes an important subject in designing such products. To enable a resilience engineering approach for IoT systems design, quantitative measures of resilience are needed for analysis and optimization. In this paper, an approach for probabilistic design of IoT system architecture is proposed, where resilience is quantified with entropy and mutual information associated with the probabilities of detection, prediction, and communication among IoT-compatible products. Information fusion rules and sensitivities are also studied.

This content is only available via PDF.
You do not currently have access to this content.