In this paper, we study the dimensional synthesis of a Stewart-Gough platform-inspired dexterous robotic hand, seeking to optimize the hand’s geometric design parameters to achieve the largest possible 6-degree-of-freedom workspace of a grasped object serving in the place of the “platform.” We present an analysis of the hand mechanism that considers both object stability from frictional contact forces as well as kinematic motion transmissibility, seeking a balance between these two properties. We examine the effect of variations in the kinematic and frictional parameters on both the workspace size of the hand as well as on the motion quality throughout the workspace across a range of grasped object sizes. We then present a spectrum of optimal designs that weight these two performance criteria differently. Most notably, the palm radius of the hand was found to have the greatest effect on the workspace size, with smaller palms exhibiting significantly larger workspaces. Overall, this work serves to inform the design process for dexterous robotic hands based on this common kinematic configuration, with the ultimate goal of increasing the dexterity of robotic manipulators to facilitate more versatile interactions with the environment.
Skip Nav Destination
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
August 26–29, 2018
Quebec City, Quebec, Canada
Conference Sponsors:
- Design Engineering Division
- Computers and Information in Engineering Division
ISBN:
978-0-7918-5180-7
PROCEEDINGS PAPER
Analysis and Dimensional Synthesis of a Robotic Hand Based on the Stewart-Gough Platform
Connor M. McCann,
Connor M. McCann
Yale University, New Haven, CT
Search for other works by this author on:
Aaron M. Dollar
Aaron M. Dollar
Yale University, New Haven, CT
Search for other works by this author on:
Connor M. McCann
Yale University, New Haven, CT
Aaron M. Dollar
Yale University, New Haven, CT
Paper No:
DETC2018-86149, V05AT07A048; 8 pages
Published Online:
November 2, 2018
Citation
McCann, CM, & Dollar, AM. "Analysis and Dimensional Synthesis of a Robotic Hand Based on the Stewart-Gough Platform." Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5A: 42nd Mechanisms and Robotics Conference. Quebec City, Quebec, Canada. August 26–29, 2018. V05AT07A048. ASME. https://doi.org/10.1115/DETC2018-86149
Download citation file:
26
Views
Related Proceedings Papers
Related Articles
On Operational Space Tracking Control of Robotic Manipulators With Uncertain Dynamic and Kinematic Terms
J. Dyn. Sys., Meas., Control (January,2019)
Development and Analysis of a Novel Parallel Manipulator Used in Four-Dimensional Radiotherapy
J. Mechanisms Robotics (June,2017)
Kinematic Design Method for Rail-Guided Robotic Arms
J. Mechanisms Robotics (February,2017)
Related Chapters
Feedback-Aided Minimum Joint Motion
Robot Manipulator Redundancy Resolution
Manipulability-Maximizing SMP Scheme
Robot Manipulator Redundancy Resolution
Self-Motion Planning with ZIV Constraint
Robot Manipulator Redundancy Resolution