Abstract

Multi-stable structures have gathered extensive interest because they can provide a broad spectrum of adaptive functions for many engineering systems. Especially, origami sheets with a translational periodicity can be stacked and assembled to form a multi-stable cellular solid, which has emerged as a promising platform to design functional structures. This paper investigates the multi-stability characteristics of a non-rigid stacked Miura-origami mechanism consisting of Miura-ori sheets and accordion-shaped connecting sheets, focusing on the elemental unit cell. A nonlinear mechanical model based on the barhinge approach is established to quantitatively study the unit cell’s multi-stability with intentionally relaxed rigid-folding conditions. Results show that only two stable states are achievable in the unit cell with enforced rigid-folding kinematics. However, if one relaxes the rigid-folding conditions and allows the facet to deform (i.e. non-rigid folding), four stable states are reachable in the unit cell if the crease torsional stiffness of the connecting sheets becomes sufficiently larger than that of the Miura-ori sheets, or the stress-free folding angle deviates away from 0°. A close examination of the potential energy composition of the non-rigid unit cell provides a detailed principle underpinning the multi-stability. By showing the benefits of exploiting facet compliance, this study can become the building blocks for origami-based structures and material systems with a wider variety of novel functionalities.

This content is only available via PDF.
You do not currently have access to this content.