To obtain detail in elastic, frictional contact problems involving contact many — at least tens, and more suitably hundreds [1] — of nodes are necessary over the contact patch. Generally, this fine discretization results in intractable numbers of system equations that must be solved, but this problem is greatly mitigated when the elasticity of the contacting bodies is represented by elastic compliance matrices rather than stiffness matrices.

An examination of the classical analytic expressions for the contact of disks — an example of smooth contact — shows that for most standard engineering metals, such as brass, steel, or titanium, the pressures that would cause more than one degree of arc of contact would push the materials past the elastic limit.

The discretization necessary to capture the interface tractions would be on the order of at least tens of nodes. With the resulting boundary integral formulation would involve several hundreds of nodes over the disk, and the corresponding finite element mesh would have tens of thousands. The resulting linear system of equations must be solved at each load step and the numerical problem becomes extremely difficult or intractable.

A compliance method of facilitating extremely fine contact patch resolution can be achieved by exploiting Fourier analysis and the Michell solution. The advantages of this compliance method are that only degrees of freedom on the surface are introduced and those not in the region of contact are eliminated from the system of equations to be solved.

This content is only available via PDF.
You do not currently have access to this content.