The effective mechanical properties of a layered surface vary as a function of indentation depth and the values of these properties range between the value of the layer itself and of the substrate. In this paper, a layered surface is modelled like a solid that has effective mechanical properties as a function of indentation depth by assuming that the layer is perfectly bounded to the substrate. The normal load as a function of indentation depth of sphere pressed against a flat layered surface is calculated using this model and is in agreement with the experimental results published by El-Sherbiney (1975), El-Shafei et al. (1983), Tang & Arnell (1999) and Michler & Blank (2001). A deterministic contact model of a rough surface against a flat layered surface is developed by representing a rough surface as an array of spherically shaped asperities with different radii and heights (not necessarily Gaussian distributed). Once the data of radius and height of every single asperity is obtained, one can calculate the number of asperities in contact, the real contact area and the load carried by the asperities as a function of the separation.

This content is only available via PDF.
You do not currently have access to this content.