Abstract

This paper reviews capacitor micromachined ultrasonic transducers (cMUTs). Transducers for air-borne and immersion applications are made from parallel-plate capacitors whose dimensions are controlled through traditional integrated circuit manufacturing methods. Transducers for airborne ultrasound applications have been operated in the frequency range of 0.1–11 MHz, while immersion transducers have been operated in the frequency range of 1–20 MHz. The Mason model is used to represent the cMUT and highlight the important parameters in the design of both airborne and immersion transducers. Theory is used to compare the dynamic range and the bandwidth of the cMUTs to piezoelectric transducers. It is seen that cMUTs perform at least as well if not better than piezoelectric transducers. Examples of single-element transducers, linear-array transducers, and two-dimensional arrays of transducers will be presented.

This content is only available via PDF.
You do not currently have access to this content.