A new empirical equation for predicting the thermal-fatigue life of wafer level chip scale package (WLCSP) solder joints on printed circuit board (PCB) is presented. The solder joints are subjected to thermal cycling and their crack lengths at different thermal cycles are measured. Also, the average strain energy density around the crack tip of different crack lengths in the corner solder joint is determined by a time-dependent nonlinear fracture mechanics with finite element method. The solder is assumed to be a temperature-dependent elastic-plastic and a time-dependent creep material.

This content is only available via PDF.
You do not currently have access to this content.