We present the design and preliminary evaluation of a paramagnetic microsphere trapping and separation device consisting of a copper solenoid wrapped around a 1.3 mm diameter glass capillary. The magnetization and subsequent dipole-dipole interaction of paramagnetic spheres under an applied magnetic field results in the formation of bead chains that persist and grow under the applied field, but quickly disperse upon field removal. The chaining of paramagnetic spheres is important to the design of magnetic-based separation devices because the viscous-drag-limited velocities of chains are typically several times larger than that of individual particles. We have performed a set of experiments designed to evaluate the performance of a sub-millimeter solenoid device including measurements of the temperature versus field strength of the device, observations of the controlled chain formation process, and preliminary observations regarding the maximum flow rate over which the bead chains can be held in place by magnetic forces. These results are applicable to the design and characterization of magnetically induced microsphere trapping and separation systems which use pressure driven flow.

This content is only available via PDF.
You do not currently have access to this content.