Abstract

The unsteady, three-dimensional, incompressible Navier-Stokes equations are solved numerically to study arterial branches in human vascular system. The solver is capable of dealing with moving boundaries and moving grids. It is designed to handle complex, three-dimensional vascular systems. The computational domain is divided into multiple block subdomains. At each cross section the plane is divided into twelve sub-zones to allow flexibility for handling complex geometries and, if needed, appropriate parallel data partitioning. A second-order in time and third-order upwind finite volume method for solving time-accurate incompressible flows based on pseudo-compressibility and dual time-stepping technique is used. For parallel execution, the flow domain is partitioned. Communication between the subdomains of the flow on Riken’s VPP/700E supercomputer is implemented using MPI message-passing library. The code is capable of running on both shared and/or distributed memory architectures.

This content is only available via PDF.
You do not currently have access to this content.