Orientation between loading and material property directions is a concern for both polycrystalline and single crystal piezoelectric materials. The design of devices fabricated from piezoelectric materials emphasizes alignment between principal actuation direction and a specific coupling coefficient direction. However, loading and actuation directions may not always be aligned. Complex component geometry, multiple loading types, multiple loading paths and fabrication tolerances may result in misalignment between mechanical loading direction, principal actuation direction, electrical loading direction and material property orientation. In this work a computational study is presented that examines the effects of off-axis loading as well as geometric features for piezoelectric ceramics. An ASTM dog-bone shaped tensile specimen is modified by the addition of cut-out features to provide geometry stress concentrations at various angles to the primary mechanical loading direction. Polycrystalline PZT-5A material properties are used. Mechanical loading is applied as in a standard tensile strength test. Electrical loading direction is aligned with the mechanical loading direction. The tensile specimen is also subjected to sequential mechanical and electrical loadings. In the initial condition the d33 axis is aligned with the mechanical loading direction of the tensile specimen. Additional runs are made after rotating the material axes away from the principal mechanical loading axes of the tensile specimen. Stress patterns and location of maximum stress levels, indicating initial failure sites, are discussed in terms of the complex relationship between geometric features, material orientation and loading condition.
Skip Nav Destination
ASME 2005 International Mechanical Engineering Congress and Exposition
November 5–11, 2005
Orlando, Florida, USA
Conference Sponsors:
- Aerospace Division
ISBN:
0-7918-4210-X
PROCEEDINGS PAPER
Influence of Geometric Features and Material Orientation in Piezoelectric Ceramic Materials
Virginia G. DeGiorgi,
Virginia G. DeGiorgi
Naval Research Laboratory
Search for other works by this author on:
Stephanie A. Wimmer
Stephanie A. Wimmer
Naval Research Laboratory
Search for other works by this author on:
Virginia G. DeGiorgi
Naval Research Laboratory
Stephanie A. Wimmer
Naval Research Laboratory
Paper No:
IMECE2005-79194, pp. 33-39; 7 pages
Published Online:
February 5, 2008
Citation
DeGiorgi, VG, & Wimmer, SA. "Influence of Geometric Features and Material Orientation in Piezoelectric Ceramic Materials." Proceedings of the ASME 2005 International Mechanical Engineering Congress and Exposition. Aerospace. Orlando, Florida, USA. November 5–11, 2005. pp. 33-39. ASME. https://doi.org/10.1115/IMECE2005-79194
Download citation file:
4
Views
0
Citations
Related Proceedings Papers
Related Articles
A Study of Displacement Distribution in a Piezoelectric Heterogeneous Bimorph
J. Mech. Des (July,2004)
Applying ASTM Standards to Tensile Tests of Musculoskeletal Soft Tissue: Methods to Reduce Grip Failures and Promote Reproducibility
J Biomech Eng (January,2021)
Effective Electromechanical Properties of 622 Piezoelectric Medium With Unidirectional Cylindrical Holes
J. Appl. Mech (September,2013)
Related Chapters
Layer Arrangement Impact on the Electromechanical Performance of a Five-Layer Multifunctional Smart Sandwich Plate
Advanced Multifunctional Lightweight Aerostructures: Design, Development, and Implementation
Part 2, Section II—Materials and Specifications
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 1, Third Edition
Part 2, Section II—Materials and Specifications
Companion Guide to the ASME Boiler & Pressure Vessel Code, Volume 1, Second Edition