In a test-fixture that the authors were using, steel tabs adhesively bonded to an aluminum panel debonded before the design load on the real test panel was fully applied. Therefore, studying behavior of adhesive joints for joining dissimilar materials was deemed to be necessary. To determine the failure load responsible for debonding of adhesive joints of two dissimilar materials, stress distributions in adhesive joints as obtained by a nonlinear finite element model of the test-fixture were studied under a gradually increasing compression-shear load. It was observed that in-plane stresses were responsible for the debonding of the steel tabs. To achieve a better understanding of adhesive joints of dissimilar materials, finite element models of adhesive lap joints and Asymmetric Double Cantilever Beam (ADCB) were studied, under loadings similar to the loading faced by the test-fixture. The analysis was performed using ABAQUS, a commercially available software, and the cohesive zone modeling was used to study the debonding growth.

This content is only available via PDF.
You do not currently have access to this content.