Microstructural design is an important approach for enhancing material properties such as fracture toughness at the macroscopic scale. Tasks in this regard require systematic quantification of both microstructure and material response. We report the development of a multi-scale computational framework based on the cohesive finite element method (CFEM) for predicting fracture toughness of materials as a function of microstructure. The approach uses the J-integral to calculate the initiation/propagation fracture toughness, allowing explicit representation of realistic microstructures and fundamental fracture mechanisms. Calculations carried out concern both brittle and ductile materials and focus on the effects of constitute behavior, phase morphology, phase distribution, and size scale on fracture toughness. Based on the CFEM results, a semi-empirical model is developed to provide a quantitative relation between the propagation toughness and statistical measures of microstructure, fracture mechanisms, and constituent and interfacial properties. Both the CFEM calculations and model predictions show that microstructure and constituent properties can significantly influence the fracture behavior and combine to determine the overall fracture toughness through the activation of different fracture mechanisms. In particular, a combination of fine microstructure size scale, rounded reinforcement morphology, and appropriately balanced bonding strength and compliance can best promote desirable crack-reinforcement interactions and lead to enhanced propagation fracture toughness. The CFEM framework, phenomenological model and the relations obtained can be useful tools for the design of failure-resistant materials.
Skip Nav Destination
ASME 2012 International Mechanical Engineering Congress and Exposition
November 9–15, 2012
Houston, Texas, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-4524-0
PROCEEDINGS PAPER
Prediction of Fracture Toughness via Microstructure-Level Simulations
Yan Li
Georgia Institute of Technology, Atlanta, GA
Min Zhou
Georgia Institute of Technology, Atlanta, GA
Paper No:
IMECE2012-86342, pp. 551-560; 10 pages
Published Online:
October 8, 2013
Citation
Li, Y, & Zhou, M. "Prediction of Fracture Toughness via Microstructure-Level Simulations." Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition. Volume 8: Mechanics of Solids, Structures and Fluids. Houston, Texas, USA. November 9–15, 2012. pp. 551-560. ASME. https://doi.org/10.1115/IMECE2012-86342
Download citation file:
12
Views
0
Citations
Related Proceedings Papers
Related Articles
The Damage Tolerance
of a Sandwich Panel Containing a Cracked Honeycomb
Core
J. Appl. Mech (November,2009)
Application of Fracture Mechanics to Failure in Manatee Rib Bone
J Biomech Eng (June,2006)
Related Chapters
Layer Arrangement Impact on the Electromechanical Performance of a Five-Layer Multifunctional Smart Sandwich Plate
Advanced Multifunctional Lightweight Aerostructures: Design, Development, and Implementation
Impact Testing
A Quick Guide to API 510 Certified Pressure Vessel Inspector Syllabus
Surface Analysis and Tools
Tribology of Mechanical Systems: A Guide to Present and Future Technologies