Light body armor development for the warfighter is based on trial-and-error testing of prototype designs against ballistic projectiles. Torso armor testing against blast is virtually nonexistent but necessary to ensure adequate mitigation against injury to the heart and lungs. In this paper, we discuss the development of a high-fidelity human torso model and the associated modeling & simulation (M&S) capabilities. Using this torso model, we demonstrate the advantage of virtual simulation in the investigation of wound injury as it relates to the warfighter experience. Here, we present the results of virtual simulations of blast loading and ballistic projectile impact to the torso with and without notional protective armor. Our intent here is to demonstrate the advantages of applying a modeling and simulation approach to the investigation of wound injury and relative merit assessments of protective body armor.

This content is only available via PDF.
You do not currently have access to this content.