Droplet spreading and oscillation occur when a liquid droplet impacts on the solid surfaces. This process is vital in many industrial applications, such as ink-jet printing technologies, spray coating and agricultural spray deposition. However, the researches that have been done mainly focused on the spreading process, and less attention has been paid to the droplet oscillation phenomenon, which has influence on the solidification and evaporation process. Therefore, the study on droplet oscillation phenomenon after the impact is necessary and valuable. This paper aims at analyzing the droplet oscillation phenomenon using VOF method. Since the contact angle varies dramatically in the dynamic process, a dynamic contact angle model is introduced to improve the simulation accuracy. The dynamic contact angle model has been verified by comparing the numerical results with experimental and theoretical results. In order to study the factors that may influence the droplet oscillation period, different droplet diameters and impact velocities are utilized in this simulation. The results show that the oscillation period presents a positive relationship with droplet diameter. However, the impact velocity has no apparent influence on the oscillation period, which agrees well with the theoretical analysis.

This content is only available via PDF.
You do not currently have access to this content.