Injuries to the upper extremities that are caused by dynamic impacts in crashes, including contact with internal instrument panels, has been a major concern, especially for smaller female occupants, and the problem worsens with increasing age due to reduced strength of the bones. From the analysis of 1988–2010 CDS unweighted data, it was found that risk of AIS ≥ 2 level for the arm was 58.2±20.6 percent higher in females than males, and the injury risk for a 75-year-old female occupant relative to a 21-year-old subjected to a similar physical insult was 4.2 times higher. Although injuries to upper extremities are typically not fatal, they can have long-term effects on overall quality of life. Therefore, it is important to minimize risks of injuries related to upper extremities, especially for elderly females, who are most at risk.

Current anthropomorphic surrogates, like crash-test dummies, cannot be directly used to study injury limits, as these dummies were developed mainly to represent the younger population. The current study is focused on the development of a finite element (FE) model representing the upper extremity of an elderly female. This can be further used to analyze the injury mechanisms and tolerance limits for this vulnerable population. The FE mesh was developed through Computer Tomography (CT) scanned images of an elderly female cadaver, and the data included for validation of the developed model were taken from the experimental studies published in scientific literature, but only the data directly representing elderly females were used. It was found that the developed model could predict fractures in the long bones of elderly female specimens and could be further used for analyzing injury tolerances for this population. Further, it was determined that the developed segmental model could be integrated with the whole body FE model of the elderly female.

This content is only available via PDF.
You do not currently have access to this content.