During the storage and transportation of aviation kerosene, spill fire and explosion caused by the corrosion of pipeline or faulty operation when released and ignited, will pose a huge threat to tanks or facilities nearby. It is critical to investigate the interaction mechanism between spreading and burning of aviation kerosene spill fires to effectively plan for civil aviation safety.

In order to gain a better understanding of aviation kerosene spill fire on sloping surface, a large-scale experimental platform with varying slope of oil groove or substrate surface for aviation kerosene spill fire has been designed and built. Aviation kerosene was selected as the fuel in the continuous spill fire for different leaking rates based on the rotation of the peristaltic pump. Spill fires with the substrate slope of 0° (as the baseline case), 0.5°, 1° and 3° were conducted. The typical burning characteristic parameters of spill fire measured are included burning area, burning rate, flame front et al. It is obtained that 1) the characteristic parameters except the averaged steady burning rate for continuous aviation kerosene spill fire increases apparently with the increasing leaking rate. 2) The effect of substrate slope on the burning of continuous spill fire is significant even though there is only 0.5° variation of the slope. 3) There is a diametrically opposite findings for the averaged steady burning rates and the initial spreading rates of continuous aviation kerosene spill fire decrease with the increasing substrate slope.

This content is only available via PDF.
You do not currently have access to this content.