Abstract
The development of a short fiber reinforced, low temperature thermoplastic splint material has potential to improve the ease, cost and efficiency of splinting and casting musculoskeletal problems. Design optimization of the fiber/matrix system is a key step in the development process of this new material. The tensile strength, flexural strength, and elastic moduli were found for 2-D randomly oriented short E-glass fiber reinforced polycaprolactone at both room temperature and at 170°F. The effect of fiber length and fiber volume fraction on the previously mentioned properties were studied by testing a range of fiber volume fractions (0.0 to 0.10) with fiber lengths of 3 mm and 7 mm. The results of this study show potential for increasing strength and rigidity of the low temperature thermoplastic through fiber reinforcement, while maintaining some degree of thermoformability.