Movements of pigs in gas pipelines are subject to more stringent parameters than that in liquid pipelines, predominantly due to the compressibility of gas. This is accentuated when the pig has to negotiate an upward inclination in the section of the pipeline, where the gravity force due to its weight can compromise the driving pressure drop across it. On a downward slope, a pig can accelerate to a velocity higher than the maximum required for the proper operation the instrumentation (which is typically around 5 m/s). On the other hand, in-line inspection tools often face challenges at wall thickness transitions or bends. The ability to accurately predict the functional performance of pigs is vital in the design and operation of pipelines and their associated pigging programs. The present paper provides a general formulation for the motion of pigs in an inclined pipeline section, taking into account effects of gas properties, wall friction, by-pass flow for speed control, differential pressure across the pig, seal efficiency, and gap flows, among other parameters. Comparison between model prediction and actual data from pigging a 158 km NPS 18 gas pipeline on TransCanada’s pipeline system in Alberta, Canada is presented. The elevation profile along this pipeline contains both positive (upward) and negative (downward) slopes. This is a lateral line which features 28 gas receipt points along the line, all were feeding in gas during the pigging program. Good agreement between model prediction and field data is demonstrated within ± 8% of St. Deviation. Example of a problem occurring at wall thickness transition at a valve section is demonstrated by a sudden stop of an MFL tool followed by a shootout at a higher velocity once the pressure is built up behind it.
Skip Nav Destination
2010 8th International Pipeline Conference
September 27–October 1, 2010
Calgary, Alberta, Canada
Conference Sponsors:
- International Petroleum Technology Institute and the Pipeline Division
ISBN:
978-0-7918-4422-9
PROCEEDINGS PAPER
Field Validation of a Dynamic Model for an MFL ILI Tool in Gas Pipelines
K. K. Botros,
K. K. Botros
NOVA Chemicals Research & Technology Centre, Calgary, AB, Canada
Search for other works by this author on:
H. Golshan
H. Golshan
TransCanada Pipelines Limited, Calgary, AB, Canada
Search for other works by this author on:
K. K. Botros
NOVA Chemicals Research & Technology Centre, Calgary, AB, Canada
H. Golshan
TransCanada Pipelines Limited, Calgary, AB, Canada
Paper No:
IPC2010-31018, pp. 325-336; 12 pages
Published Online:
April 4, 2011
Citation
Botros, KK, & Golshan, H. "Field Validation of a Dynamic Model for an MFL ILI Tool in Gas Pipelines." Proceedings of the 2010 8th International Pipeline Conference. 2010 8th International Pipeline Conference, Volume 3. Calgary, Alberta, Canada. September 27–October 1, 2010. pp. 325-336. ASME. https://doi.org/10.1115/IPC2010-31018
Download citation file:
26
Views
Related Proceedings Papers
Related Articles
Nonisothermal
Transient Flow in Natural Gas Pipeline
J. Appl. Mech (May,2008)
Water Hammer Simulation in a Steel Pipeline System With a Sudden Cross Section Change
J. Fluids Eng (September,2021)
Air and Power Requirements for the Pneumatic Transport of Crushed Coal in Horizontal Pipelines
J. Eng. Ind (February,1975)
Related Chapters
Natural Gas Transmission
Pipeline Design & Construction: A Practical Approach, Third Edition
LARGE STANDOFF MAGNETOMETRY TECHNOLOGY ADVANCES TO ASSESS PIPELINE INTEGRITY UNDER GEOHAZARD CONDITIONS AND APPROACHES TO UTILISATION OF IT
Pipeline Integrity Management Under Geohazard Conditions (PIMG)
Introduction to Pipeline Systems
Pipeline Pumping and Compression Systems: A Practical Approach