Abstract
Recent growth in the cloud storage industry has created a massive demand for higher capacity hard disk drives (HDD). A sub-nanometer head media spacing (HMS) remains the most critical pre-requisite to achieve the areal density needed to deliver the next generation of HDD products. Designing a robust head-disk interface (HDI) with small physical clearance requires the understanding of slider dynamics, especially when the head flies in proximity to the disk surface. In this paper, we describe a method using the magnetic read-back signal to characterize the head fly-height modulations as it undergoes a transition from a free-flying state to soft contact with the disk surface. A technique based on the magnetic fly-height sensitivity is introduced for the identification of the transition plane that corresponds to the onset of the touchdown process. Additionally, the proposed magnetic spacing based meteorology is used to study the effect of the air bearing stiffness on the magnitude of the slider vibrations induced by intermittent head-disk interactions. The information about the minimum spacing while maintaining the stable flying conditions can help in reducing the head-disk interaction risk that can enable a low clearance interface.