The phase-change process of phase-change material (PCM) is the key for the microencapsulated phase-change material (MCPCM) particle suspension flow to enhance the heat transfer, enlarge the capability of thermal energy transportation and employ in the engineering application. In the present paper, the parametric study for the phase-change process of the MCPCM suspension flow in a heated microchannel is carried out using the model and numerical technique developed in previous works. The effects of particle volume fraction, Reynolds number, and wall heat flux on the phase-change process have been numerically analyzed. It is found that the benefits of enhancing heat transfer and reducing wall temperature by employing the MCPCM particle are limited to the melting region. There exists a constant wall temperature region in the melting region under the certain condition. The trend of influence of particle volume fraction, Reynolds number, and wall heat flux on starting location, length, wall temperature, and average heat transfer coefficient in the constant wall temperature region is revealed. The numerical simulation may guide the optimal condition of design and operation to utilize the MCPCM suspension flow not only for enhancing the convection heat transfer and enlarging the thermal energy transportation capability, but also for controlling the micro-device temperature uniform.

This content is only available via PDF.
You do not currently have access to this content.