Using large-eddy simulation technique for dense particle-fluid flows, the current-induced scour is predicted for both the mono- and bi-dispersed systems below a horizontal submarine pipeline exposed to unidirectional flow. The simulations are four-way coupled, which implies that both solid-liquid and solid-solid interactions are taken into account. Particles are assumed to behave as visco-elastic solids during interactions with their neighboring particles, and their motion are predicted by a Lagrangian method. The inter-particle normal and tangential contact forces between particles are calculated using a generalized Hertzian model. The other forces on a particle that are taken into account include gravitational, pressure gradient force accounting for the acceleration of the displaced liquid, the drag force resulting from velocity difference with the surrounding liquid, and the Magnus and Saffman lift forces. The predicted scour profiles for monodispersed system are found to compare favorably with the laboratory observations. For the bi-dispersed system, a seepage flow underneath the pipe (which is a major factor to cause the onset of scour below the pipeline) is found to be weakened using an appropriate size for the sand bed. This finding highlights the importance of the bed particle size distribution on the onset of scour below the pipelines.
Skip Nav Destination
ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering
June 15–20, 2008
Estoril, Portugal
Conference Sponsors:
- Ocean, Offshore and Arctic Engineering Division
ISBN:
978-0-7918-4820-3
PROCEEDINGS PAPER
Analysis of Submarine Pipeline Scour Using Large-Eddy Simulation of Dense Particle-Liquid Flows
Piroz Zamankhan,
Piroz Zamankhan
University of Kurdistan, Sanandaj, Iran
Search for other works by this author on:
Amir Ali Doolatshahi
Amir Ali Doolatshahi
K. N. Toosi University, Tehran, Iran
Search for other works by this author on:
Piroz Zamankhan
University of Kurdistan, Sanandaj, Iran
Amir Ali Doolatshahi
K. N. Toosi University, Tehran, Iran
Paper No:
OMAE2008-57682, pp. 545-562; 18 pages
Published Online:
July 27, 2009
Citation
Zamankhan, P, & Doolatshahi, AA. "Analysis of Submarine Pipeline Scour Using Large-Eddy Simulation of Dense Particle-Liquid Flows." Proceedings of the ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering. Volume 3: Pipeline and Riser Technology; Ocean Space Utilization. Estoril, Portugal. June 15–20, 2008. pp. 545-562. ASME. https://doi.org/10.1115/OMAE2008-57682
Download citation file:
7
Views
0
Citations
Related Proceedings Papers
Related Articles
Analysis of Submarine Pipeline Scour Using Large-Eddy Simulation of Dense Particle-Liquid Flows
J. Offshore Mech. Arct. Eng (May,2009)
Application of Lumley’s Drag Reduction Model to Two-Phase Gas-Particle Flow in a Pipe
J. Fluids Eng (March,1991)
Flow and Deposition Characteristics Following Chokes for Pressurized CO 2 Pipelines
J. Energy Resour. Technol (July,2018)
Related Chapters
Pipeline Integrity and Security
Continuing and Changing Priorities of the ASME Boiler & Pressure Vessel Codes and Standards
Contamination and Impacts of Exploration and Production Waste Constituents
Guidebook for Waste and Soil Remediation: For Nonhazardous Petroleum and Salt Contaminated Sites
System Automation
Pipeline Operation & Maintenance: A Practical Approach, Second Edition