This paper presents experiments and an analysis on self-excited vibration of a plate supported by air pressure in a floating conveying machine. In this study, the instability conditions are examined by theoretical analysis in consideration of the effect of compressibility of air in a chamber. The system’s characteristic equation is derived from the plate motion coupled with equations of the gap flow between the plate and the chamber surface. The vibration characteristics and the instability conditions of the self-excited vibration are examined through experiments. The stability of the plate is affected by an air flow rate, a mass of the plate, a spring stiffness of the plate. We clarified those influences on the instability conditions of the self-excited vibration. The unsteady fluid force acting on the plate (bottom surface) is investigated by measuring the unsteady pressure. The local work done by the unsteady fluid force is also clarified. Lastly, the instability mechanism and important parameters of the self-excited vibration are discussed based on the theoretical model and experimental results.

This content is only available via PDF.
You do not currently have access to this content.