One of the primary goals of medical micro and nano robots is to reach currently inaccessible areas of the human body and carry out a host of complex operations, such as minimally invasive surgery (MIS), highly localized drug delivery, and screening for diseases at their very early stages. One of the innovative approaches to design microrobot propulsion is based on the flagellar motion of bacteria [1]. Certain bacteria, such as Escherichia coli (E.coli) use multiple flagella often concentrated at one end of their bodies to induce locomotion. Each flagellum is formed in a left-handed helix and has a motor at the base that rotates the flagellum in a corkscrew motion. As pointed out by Purcell in his Lecture “Life at low Reynolds numbers” [2], microorganisms experience an environment quite different from our own. In particular, because of their small size (of the order of microns), inertia is, to them, essentially irrelevant. The fact that inertia is irrelevant for micro-organisms makes it difficult for them to move. The propulsive mechanisms based on flow inertia will not work on a mesoscopic scale. To overcome this problem, organisms living in low Reynolds number regimes have developed moving organelles which have a handedness to them. For instance, E. Coli’s flagella rotate with a helical motion, much like a corkscrew. This configuration produces patterns of motion that do not repeat the first half of the cycle in reverse for the second half, allowing the organisms to achieve movement in their environment.

This content is only available via PDF.
You do not currently have access to this content.